What cost for photovoltaic modules in 2020? Lessons from experience curves

Arnaud de la Tour CERNA, Mines ParisTech

Importance of cost prediction for photovoltaic energy

High cost today...

 ...But future cost decrease through "learning by doing"
 →Justifying development policy

One factor...

$$C = C_0 Exp^{-E}$$

- C: cost of one unit of output
- C₀: the cost of the first unit
- Exp: experience (measured by cumulative output or another proxy)
- Learning rate = $1 2^{-E}$
- ...Or multifactor

$$C = a Exp^{-E} X^{\alpha} Y^{\beta} \dots$$

Regression equation:

$$\log(C) = \log(a) - E\log(Exp) + \alpha \log(X) + \beta \log(Y) + \varepsilon_t$$

Survey of experience curves applied to the PV industry

- 20 studies
- 17 with only experience as explanatory variable
 - Mostly on a global scale
 - Average learning rate of 20.2% on a global scale
- 3 with other variables: scale, R&D, silicon price, and silver price

Several variables can be included in the model

Purpose of the study

- Find the best specification of the model
 - Criterion: predictive power
- Use it to predict module cost until 2020
- Draw the implications for the cost of PV electricity

Consequence of the addition of an explanatory variable?

Two issues are important for the accuracy of the predictions:

- The predictability of the variable
- The consequence on the predictive power of the model
 - The addition avoids the omitted variable bias...
 - ...but it can create multicollinearity increasing the variance

No clear answer → we test it empirically

Out of the sample evaluation of the different specifications

Objective:

- Evaluate the predictive power of the 16 different specifications = combination of explanatory variables:
 - Cumulative capacity: always included
 - Scale
 - R&D
 - Silicon price
 - Silver price

Possible additional explanatory variable

 \Rightarrow

16 combinations

Data:

 World average annual values from 1990 to 2011 for PV modules price, cumulative capacity, plant size, R&D knowledge stock, Silicon price, and Silver price

Out of the sample evaluation Methodology

- We estimate 192 models
 - 16 specifications
 - Estimated on 12 ten years periods: 1990 → 1999; 1991→2000, ...
- Prediction after the estimation period until 2011
- Measurement of prediction accuracy based on the difference between the predicted \hat{y}_i and the realized value y_i
- For each specification / time horizon, we compute the mean absolute percentage error (MAPE)

$$MAPE(t) = \frac{1}{n_t} * \sum_{i=1}^{n_t} \left| \frac{\hat{y}_i - y_i}{y_i} \right|$$

With t, the time horizon of the prediction,

 n_t the corresponding number of predictions at this time horizon

Out of the sample evaluation -Results

Results of the out of the sample evaluation

The specification with experience and silicon price has the best predictive power

Post 2011prediction of the dependent variables

- Cumulative capacity

Highly dependent on policy decisions

Post 2011prediction of the dependent variables -Silicon price

Silicon price (2011\$/kg)

Results: PV module price evolution until 2020

Module price of 0.60\$/Wp in 2020 [0.47-0.74]

What PV electricity cost in 2020?

- The Levelized Cost Of Electricity (LCOE) in \$/kWh
 - LCOE = $\frac{Net \ present \ value \ (cost \ of \ the \ system + operation\& maintenance)}{Net \ present \ value \ (electricity \ produced)}$
- depends on
 - The module price (about 40% of the total LCOE)
 - The lifetime of the project
 - The type of PV system (residential, commercial, utility)
 - The location (sunlight availability)
 - Etc...

It doesn't make sense to talk about on price of PV electricity

- Definition: When the LCOE of a PV system reaches the retail price of electricity (240\$/MWh in Europe in 2011)
- Concern residential systems (replace electricity from the grid)

Result:

- Already reached in California and most of Spain,
- We predict in Germany in 2013 where the electricity is expensive,
- in 2017 in France...
- What means grid parity?
 - Doesn't create the expected demand boom
 - Still long payback time

Competitiveness vith conventional technologies

- Definition: When the LCOE reaches the LCOE from conventional sources: about 70\$/MWh
- Concerns utility systems (compete with power plants)

Results:

- In 2019/2020 in the sunniest places (south of Spain or Italy, California...)
- Several years later in other countries
- Competitiveness with conventional technologies still miss the issue of integration

Conclusion

- The empirical evaluation suggests that the most accurate specification includes experience and silicon price as explanatory variables
- This model predicts a module price of 0.60\$/kWh in 2011
 - Learning rate of 19.6%
- Competitiveness implications:
 - Grid parity is already a reality in regions with high sun availability and/or high electricity price
 - But competitiveness with conventional electricity production sources is still far (2019 in the sunniest places)
- Doesn't take into account other important aspects
 - Integration