Introduction	Data	Analysis of exemption rules	Optimal permit allocation	Conclusion

Industry Compensation under Relocation Risk: A Firm-level Analysis of the EU Emissions Trading System

Ulrich Wagner Universidad Carlos III de Madrid

joint with Mirabelle Muûls, Laure de Preux, and Ralf Martin

5th Atlantic Workshop on Energy and Environmental Economics, Isla de la Toja June 26, 2012

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Introduction	Data	Analysis of exemption rules	Optimal permit allocation	Conclusion

1 Introduction

2 Data

3 Empirical analysis of exemption rules for permit auctions

Optimal permit allocation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへ⊙

Introduction ●0000	Data 0000	Analysis of exemption rules	Optimal permit allocation	Conclusion O
Motivation and Summa	ary			

"If [the financial transaction tax] really happened, we would have to move our business to New York or Singapore or Hong Kong. Our business would continue. [It is] just sad it wouldn't continue in London."

Regulation and Relocation Risk

BBC interview with Michael Spencer, Group Chief Executive Officer of leading financial transactions company ICAP, available online at http://www.bbc.co.uk/news/business-16990025.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Data	Analysis of exemption rules	Optimal permit allocation	Conclusion
00000				
Motivation and Summa	ry			

The Case for Industry Compensation

- Relocation of regulated firms to non-regulated jurisdictions has undesirable consequences from government's p.o.v.
 - loss of jobs, taxable profits etc.
 - "carbon leakage": evasion of regulated emissions
- Politicians keen to prevent relocation ("protect international competitiveness")
- Implications for policy design:
 - Lobbying for exemptions undermines policy objectives (e.g. European carbon taxes)
 - Efficiency cost of compensation changes the ranking of different policy instruments (Bovenberg, Goulder & Gurney 2005 *RAND*; Bovenberg, Goulder & Jacobsen, 2008, *JPubE*)
- If the sole aim of compensation is to prevent relocation, how much should be offered, and to whom?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Data	Analysis of exemption rules	Optimal permit allocation	Conclusion
00000				
Motivation and Summa	ry			

Industry Compensation in the EU ETS

- Cap-and-trade system for stationary sources (power generation, industrial emitters) in 30 countries. *Largest* "carbon pricing experiment" worldwide
- Trading Phase III, 2013-2020: Shift from grandfathering to auctioning of permits in manufacturing.
- Industry has successfully lobbied to be exempt from permit auctions
- European Commission (EC) will exempt industries deemed at risk of relocation to prevent offshoring of jobs and carbon leakage
- Compensation offered in the form of free emission permits

Introduction	Data	Analysis of exemption rules	Optimal permit allocation	Conclusion
00000				
Motivation and Summa	ry			

Optimal compensation under relocation risk

- Goal: Assess the efficiency gap and distributional effects of EC proposal
- Key ingredient: New firm-level measure of relocation propensity in response to future carbon pricing, based on interviews with managers
 - Match with microdata on performance and carbon emissions

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

Introduction 0000●	Data 0000	Analysis of exemption rules	Optimal permit allocation	Conclusion O
Motivation and Summa	ıry			
Main Resu	lts			

- No evidence that permit auctions will lead to exodus of firms
- EC criteria give rise to
 - overly generous compensation
 - unequal treatment of countries
 - highly unequal distribution of subsidies per job
- Simple fix of EC criteria for exempting sectors from auctioning could generate 6.7 bn Euros in permit revenue p.a.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Firm level: Optimal permit allocation
 - reduces risk of job loss by two thirds and
 - leads to more equal distribution of subsidies per job

Introduction	Data	Analysis of exemption rules	Optimal permit allocation	Conclusion

1 Introduction

2 Data

3 Empirical analysis of exemption rules for permit auctions

Optimal permit allocation

5 Conclusion

●●● 単則 《田》《田》《日》

Introduction	Data	Analysis of exemption rules	Optimal permit allocation	Conclusion
	••••			
Interviewing Managers				

 \Rightarrow Talk to managers

- large N move beyond case studies
- open question, answers scored on a grid [1-5] by trained interviewer
- avoid common types of survey bias
 - double blind
 - double scoring

Introduction 00000	Data ●000	Analysis of exemption rules	Optimal permit allocation	Conclusion 0
Interviewing Managers				

 \Rightarrow Talk to managers

- large N move beyond case studies
- open question, answers scored on a grid [1-5] by trained interviewer
- avoid common types of survey bias
 - double blind
 - double scoring
 - analyst rotation and extensive noise controls

Introduction 00000	Data ●000	Analysis of exemption rules	Optimal permit allocation	Conclusion 0
Interviewing Managers				

◆□ ◆ □ ▼ ▲ □ ▼ ▲ □ ▼ ● ▲ □ ◆ ● ◆ □ ◆

 \Rightarrow Talk to managers

- large N move beyond case studies
- open question, answers scored on a grid [1-5] by trained interviewer
- avoid common types of survey bias
 - double blind
 - double scoring
 - analyst rotation and extensive noise controls

Introduction 00000	Data ●000	Analysis of exemption rules	Optimal permit allocation	Conclusion 0
Interviewing Managers				

 \Rightarrow Talk to managers

- large N move beyond case studies
- open question, answers scored on a grid [1-5] by trained interviewer
- avoid common types of survey bias
 - double blind
 - double scoring
 - analyst rotation and extensive noise controls

Introduction 00000	Data ⊙●○○	Analysis of exemption rules	Optimal permit allocation	Conclusion O
Interviewing Mana	gers			
Basic St	atistics			

- Interviewed 770 managers in 6 European countries
- Random sampling from all medium-sized manufacturing firms in ORBIS data base (balance sheet data)
- Oversampled ETS firms at random from the ETS register (CITL)

	# of Interviews	# of Firms Interviewed	# of ETS Firms Interviewed	# of Non ETS Firms Interviewed	Total Firms Contacted	Refused	Response Rate
Belgium	134	131	85	46	178	47	0.74
France	141	140	92	48	238	98	0.59
Germany	139	138	95	43	337	199	0.41
Hungary	69	69	37	32	90	21	0.77
Poland	78	78	57	21	140	62	0.56
UK	209	205	63	142	468	264	0.44
Total	770	761	429	332	1451	691	0.52

Table: Interview response rates by country

Introduction 00000	Data ○○●○	Analysis of exemption rules	Optimal permit allocation	Conclusion O
Measuring vulnerability	to carbon pricing			
Vulnerabili	ty Score			

"Do you expect that government efforts to put a price on carbon emissions will force you to outsource parts of the production on this business site in the foreseeable future, or to close down completely?"

Scoring:

- Low(1): No impact of this kind
- Mid(3): Significant reduction (>10%) in production or employment due to outsourcing

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

High(5): Complete close-down

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

- Overall risk is low but some sectors are at risk
- ask me about validity checks in the Q&A

Introduction	Data	Analysis of exemption rules	Optimal permit allocation	Conclusion

1 Introduction

2 Data

Optimal permit allocation

・ロト・(日)ト・(日)ト・(日)ト・(ロト)

Introduction	Data	Analysis of exemption rules	Optimal permit allocation	Conclusion
		00000		
EC Criteria for exemptin	ng 4-digit sectors	from permit auctions		

Exemption groups

- A. High Carbon Intensity >30%
- B. High Trade Intensity (TI) > 30% (and not A)
- C. Intermediate Carbon and Trade Intensity

ntroduction

Analysis of exemption rules

Optimal permit allocation 00000

Conclusion 0

Relationship between EC criteria and the vulnerability score

CI is correlated with vulnerability, but not TI

	(1)	(2)	(3)	(4)	(5)
		Vulner	rability Scor	e (VS)	
Sectoral Trade Intensity (TI)	-0.012		0.050	0.051	0.097
	(0.092)		(0.112)	(0.096)	(0.117)
Carbon Intensity (CI)		0.229***	0.454**	0.292***	0.473***
		(0.063)	(0.215)	(0.090)	(0.114)
TI X TI			-0.037		
			(0.037)		
CI X CI			0.007		
			(0.074)		
TI X CI			0.059	0.086	0.063
			(0.106)	(0.091)	(0.134)
Weights	no	no	no	no	employment
Observations	392	392	392	392	392

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆□ ■ ● ● ● ●

 Introduction
 Data
 Analysis of exemption rules
 Optimal permit allocation
 Conclusion

 00000
 00000
 00000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Relationship between EC criteria and the vulnerability score

No threshold effects of exemption criteria

	(1)	(2)	(3)	(4)	(5)
	Vu	Inerability Sc	core	Vulnerabi	lity Score>2
CI>30 (A)	1.032***	1.015***	1.996***	0.714***	1.704***
	(0.303)	(0.312)	(0.523)	(0.242)	(0.448)
TI>30 ∩ CI<30 (B)	0.225				
	(0.258)				
10 <ti<30 (c)<="" 5<ci<30="" td="" ∩=""><td>0.122</td><td>0.139</td><td>0.358</td><td>0.105</td><td>0.271</td></ti<30>	0.122	0.139	0.358	0.105	0.271
	(0.248)	(0.240)	(0.241)	(0.233)	(0.292)
$B \cap CI > 5$		0.596*	1.031***	0.500**	1.267***
		(0.316)	(0.322)	(0.252)	(0.417)
$B \cap CI < 5$		-0.053	0.056	-0.059	0.121
		(0.243)	(0.329)	(0.233)	(0.389)
Constant	1.623***	1.572***	1.426		
	(0.516)	(0.523)	(0.912)		
Weights	no	no	employment	no	employment
Observations	392	392	392	392	392

but TI sectors are vulnerable if at least moderately carbon intensive

Introduction 00000	Data 0000	Analysis of exemption rules ○○○●○○	Optimal permit allocation	Conclusion O
Two simple improvement	nts			
Improveme	ent 1: E	xempt only sector	s with a significar	t

impact

NOT exempting C and B ∩ CI<5 would NOT increase relocation risk
 could raise an additional €6.7 bn p.a. in auction revenues

 $\Delta Revenue = \Delta (CO_2 \text{ share not exempt}) \cdot (CO_2)_{\text{Manufally}} = AF_{\text{ERCG}} = \mathcal{O} \otimes \mathcal{O}$

Introduction 00000	Data 0000	Analysis of exemption rules	Optimal permit allocation	Conclusion O
Two simple improvement	its			
Improveme	nt 1: E	empt only sector	s with a significan	t i

impact

NOT exempting C and B ∩ CI<5 would NOT increase relocation risk
 could raise an additional €6.7 bn p.a. in auction revenues

 $\Delta Revenue = \Delta (CO_2 \text{ share not exempt}) \cdot (CO_2)_{Manufallutints} = AF_{CG} = \mathfrak{I}_{CG}$

Introduction 00000	Data 0000	Analysis of exemption rules	Optimal permi	t allocation Con O	clusion
Two simple improveme	nts				
Improveme	ent 1: E	xempt only s	ectors with a	significant	

impact

 $\bullet~$ NOT exempting C and B $\cap~$ CI<5 would NOT increase relocation risk

• could raise an additional €6.7 bn p.a. in auction revenues

 $\Delta Revenue = \Delta (CO_2 \text{ share not exempt}) \cdot (CO_2)_{Manufacturing} = AF = P_{CO_2} = OQC_2$

Introduction	Data	Analysis of exemption rules	Optimal permit allocation	Co
		000000		

Two simple improve<u>ments</u>

Improvement 2: Use TI with less developed countries

	(1)	(2)	(3)	
	Vulnerability Score			
Sectoral Carbon Intensity (CI)	0.234***	0.547***	0.551***	
	(0.060)	(0.169)	(0.166)	
Sectoral Trade Intensity (TI)	0.376**	0.695***	1.454***	
with LESS developed countries	(0.164)	(0.232)	(0.245)	
TI with LEAST developed countries	-0.228***	-0.422***	-0.740***	
	(0.076)	(0.157)	(0.174)	
TI with Developed non-EU countries	0.117	-0.216	-0.593***	
	(0.125)	(0.243)	(0.219)	
TI with EU countries	-0.229**	-0.411***	-0.680***	
	(0.114)	(0.143)	(0.190)	
Quadratic terms	no	yes	yes	
Interaction terms	no	yes	yes	
Weights	no	no	employment	
Observations	389	389	389	

 use same thresholds, but only TI will less developed countries instead of overall TI

● could raise an additional €2.8 bn p.a. in auction revenues

Introduction	Data	Analysis of exemption rules	Optimal permit allocation	Co
		000000		

Two simple improvements

Improvement 2: Use TI with less developed countries

	(1)	(2)	(3)
	Vı	Inerability Sc	ore
Sectoral Carbon Intensity (CI)	0.234***	0.547***	0.551***
	(0.060)	(0.169)	(0.166)
Sectoral Trade Intensity (TI)	0.376**	0.695***	1.454***
with LESS developed countries	(0.164)	(0.232)	(0.245)
TI with LEAST developed countries	-0.228***	-0.422***	-0.740***
	(0.076)	(0.157)	(0.174)
TI with Developed non-EU countries	0.117	-0.216	-0.593***
	(0.125)	(0.243)	(0.219)
TI with EU countries	-0.229**	-0.411***	-0.680***
	(0.114)	(0.143)	(0.190)
Quadratic terms	no	yes	yes
Interaction terms	no	yes	yes
Weights	no	no	employment
Observations	389	389	389

 use same thresholds, but only TI will less developed countries instead of overall TI

• could raise an additional €2.8 bn p.a. in auction revenues

●●● 単則 《田》《田》《日》

Introduction	Data	Analysis of exemption rules	Optimal permit allocation	Conclu
		000000		

Two simple improvements

Improvement 2: Use TI with less developed countries

	(1)	(2)	(3)
	Vu	Inerability Sc	ore
Sectoral Carbon Intensity (CI)	0.234***	0.547***	0.551***
	(0.060)	(0.169)	(0.166)
Sectoral Trade Intensity (TI)	0.376**	0.695***	1.454***
with LESS developed countries	(0.164)	(0.232)	(0.245)
TI with LEAST developed countries	-0.228***	-0.422***	-0.740***
	(0.076)	(0.157)	(0.174)
TI with Developed non-EU countries	0.117	-0.216	-0.593***
	(0.125)	(0.243)	(0.219)
TI with EU countries	-0.229**	-0.411***	-0.680***
	(0.114)	(0.143)	(0.190)
Quadratic terms	no	yes	yes
Interaction terms	no	yes	yes
Weights	no	no	employment
Observations	389	389	389

- use same thresholds, but only TI will less developed countries instead of overall TI
- could raise an additional €2.8 bn p.a. in auction revenues

Introduction	Data	Analysis of exemption rules	Optimal permit allocation	Conclusion
		000000		
More fundamental impr	ovement			

Within-group heterogeneity calls for firm-level exemptions

Figure: Distribution of vulnerability score by category

Introduction	Data	Analysis of exemption rules	Optimal permit allocation	Conclusion

1 Introduction

2 Data

3 Empirical analysis of exemption rules for permit auctions

Optimal permit allocation

Introduction	Data	Analysis of exemption rules	Optimal permit allocation	Conclusion
00000	0000		••••••	O
Model				

$$\pi_i^{domestic}(permits_i) < \underbrace{\pi_i^{abroad} - cost_i^{relocation}}_{\epsilon_i \sim \Phi_i(\cdot)}$$

Firm i's contribution to aggregate relocation risk

$$\textit{risk}_i(\textit{permits}_i) = \underbrace{\Phi_i\left[-\pi_i(\textit{permits}_i)\right]}_{\textit{relocation propensity}} \cdot \underbrace{\left[\alpha\textit{Jobs}_i + (1-\alpha)\textit{Emissions}_i\right]}_{\textit{relocation damage}} \quad 0 \leq \alpha \leq 1.$$

• Minimize Risk:

 $\min_{\{permits_i \geq 0\}} \sum_{i=1}^{n} risk_i(permits_i) \text{ s.t. } \sum_i permits_i \leq permit \text{ constraint.}$

Minimize Cost:

$$\min_{permits_i \geq 0} \sum_{i=1}^n permits_i ext{ s.t. } \sum_{i=1}^n ext{risk}_i(ext{permits}_i) \leq ext{risk constraint}$$

Introduction	Data	Analysis of exemption rules	Optimal permit allocation	Conclusion
00000	0000		••••••	O
Model				

$$\pi_i^{domestic}(permits_i) < \underbrace{\pi_i^{abroad} - cost_i^{relocation}}_{\epsilon_i \sim \Phi_i(\cdot)}$$

Firm i's contribution to aggregate relocation risk

$$\textit{risk}_i(\textit{permits}_i) = \underbrace{\Phi_i\left[-\pi_i(\textit{permits}_i)\right]}_{\textit{relocation propensity}} \cdot \underbrace{\left[\alpha\textit{Jobs}_i + (1-\alpha)\textit{Emissions}_i\right]}_{\textit{relocation damage}} \quad 0 \leq \alpha \leq 1.$$

Minimize Risk:

$$\min_{\{permits_i \geq 0\}} \sum_{i=1}^{n} risk_i(permits_i) \text{ s.t. } \sum_{i} permits_i \leq permit \text{ constraint.}$$

Minimize Cost:

$$\min_{permits_i \ge 0} \sum_{i=1}^n permits_i \text{ s.t. } \sum_{i=1}^n risk_i(permits_i) \le risk \text{ constraint}$$

Introduction	Data	Analysis of exemption rules	Optimal permit allocation	Conclusion
00000	0000		••••••	O
Model				

$$\pi_i^{domestic}(permits_i) < \underbrace{\pi_i^{abroad} - cost_i^{relocation}}_{\varepsilon_i \sim \Phi_i(\cdot)}$$

Firm i's contribution to aggregate relocation risk

$$\textit{risk}_i(\textit{permits}_i) = \underbrace{\Phi_i\left[-\pi_i(\textit{permits}_i)\right]}_{\textit{relocation propensity}} \cdot \underbrace{\left[\alpha\textit{Jobs}_i + (1-\alpha)\textit{Emissions}_i\right]}_{\textit{relocation damage}} \quad 0 \leq \alpha \leq 1.$$

$$\min_{\substack{\{permits_i \geq 0\}}} \sum_{i=1}^{n} risk_i(permits_i) \text{ s.t. } \sum_i permits_i \leq permit \text{ constraint.}}$$

Minimize Cost:

$$\min_{\textit{permits}_i \ge 0} \sum_{i=1}^{n} \textit{permits}_i \text{ s.t. } \sum_{i=1}^{n} \textit{risk}_i(\textit{permits}_i) \le \textit{risk constraint}$$

Introduction	Data	Analysis of exemption rules	Optimal permit allocation	Conclusion
00000	0000		•••••	0
Model				

$$\pi_i^{domestic}(permits_i) < \underbrace{\pi_i^{abroad} - cost_i^{relocation}}_{\epsilon_i \sim \Phi_i(\cdot)}$$

Firm i's contribution to aggregate relocation risk

$$\textit{risk}_i(\textit{permits}_i) = \underbrace{\Phi_i\left[-\pi_i(\textit{permits}_i)\right]}_{\textit{relocation propensity}} \cdot \underbrace{\left[\alpha\textit{Jobs}_i + (1-\alpha)\textit{Emissions}_i\right]}_{\textit{relocation damage}} \quad 0 \le \alpha \le 1.$$

Minimize Risk:

$$\min_{\{permits_i \geq 0\}} \sum_{i=1}^{n} risk_i(permits_i) \text{ s.t. } \sum_{i} permits_i \leq permit \text{ constraint.}$$

Minimize Cost:

$$\min_{permits_i \ge 0} \sum_{i=1}^{n} permits_i \text{ s.t. } \sum_{i=1}^{n} risk_i(permits_i) \le risk \text{ constraint}$$

Introduction 00000	Data 0000	Analysis of exemption rules	Optimal permit allocation ○●○○○	Conclusion O
Model				
Numerica	l Soluti	on		

- deal with corner solutions
 - use dynamic programming in the cross section of firms
- marginal relocation probability $\Phi_i(\cdot)$:

ask respondents how score changes with free

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

allowance for 80% of emissions \Rightarrow

Introduction 00000	Data 0000	Analysis of exemption rules	Optimal permit allocation	Conclusion 0
Simulations				

Minimize job loss s.t. fixed amount of free permits

Optimal allocation reduces risk to ETS manufacturing jobs from 10.6% to 3.5%

(from 2.1% to 0.76% of total EU manufactuging jobs) =, and some

Introduction 00000	Data 0000	Analysis of exemption rules	Optimal permit allocation	Conclusion 0
Simulations				

Minimize job loss s.t. fixed amount of free permits

Optimal allocation reduces risk to ETS manufacturing jobs from 10.6% to 3.5%

(from 2.1% to 0.76% of *total* EU manufacturing jobs)

Introduction 00000	Data 0000	Analysis of exemption rules	Optimal permit allocation	Conclusion O			
Distributional implications							
Which co	ountries	gain?					

Table: % Change in free permits: EC proposal vs. counterfactuals

	Belgium	France	Germany	Hungary	Poland	UK
Counterfactual						
Proportional reduction	2.6	-1.3	-0.0	-6.8	2.7	-1.1
Minimal job risk	12.2	-12.4	48.1	9.2	14.1	-17.3
Minimal carbon risk	5.1	-7.4	43.7	-6.5	-2.5	-10.2

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)
 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)
 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)</

- Need a model that justifies non-uniform permit allocations because looking at raw data doesn't control for differences in relocation risk.
- Relevant benchmark is the optimal allocation across firms.
- Germany and Belgium gain
- France and UK lose

Introduction 00000	Data 0000	Analysis of exemption rules	Optimal permit allocation ○○○○●	Conclusion O		
Distributional implications						
Distributic	on of su	bsidies per job				

Minimal cost scenarios

Introduction 00000	Data 0000	Analysis of exemption rules	Optimal permit allocation	Conclusion ○

1 Introduction

2 Data

3 Empirical analysis of exemption rules for permit auctions

Optimal permit allocation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへ⊙

Introduction 00000	Data 0000	Analysis of exemption rules	Optimal permit allocation	Conclusion •
Conclusions				
Conclusior	าร			

- If industry compensation is based on extensive-margin response to regulation, relocation risk should be be equalized across firms
- EC's trade intensity criterion has little to say about relocation risk across sectors
- €6.7 bn could be raised through a simple modification of the EC criteria without increasing relocation risk
- Allocation of free permits at the firm level is more efficient and reduces excessive per-job subsidies to individual firms

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

External data sources

Emissions Official registry of the EU ETS: Community Independent Transaction Log (CITL)

- Performance ORBIS database provides balance-sheet data on all firms
 - Trade use PRODCOM and EUROSTAT sources to calculate sector level trade intensities.

Matching Interview sample: 429 EU ETS firms, hand-matched to ORBIS and CITL. Full sample: Based on Calel and Dechezlepretre (2012), match 75% of CITL installations to 4,254 firms in ORBIS

Regression coefficients on different category dummies

Significant downsizing only in very carbon intensive sectors (A)

▲□▶▲□▶▲≡▶▲≡▶ Ξ|= めぬ⊙

Appendix 00●000000000000000			
Extra Slides			

- NOT exempting C and B & VaS<5 could raise €7 bn p.a.
- Heterogeneity within groups: could do better by defining exemptions at the firm level

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)
 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)
 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)</

Appendix oo∙oooooooooooooo			
Extra Slides			

Share of firms, employment and emissions in different categories

- NOT exempting C and B & VaS<5 could raise €7 bn p.a.
- Heterogeneity within groups: could do better by defining exemptions at the firm level

Extra Slides

Optimality condition

The first-order condition for an interior solution is given by

$$\Phi'\left[-\pi_{i}(q_{i})\right]\frac{\partial\pi_{i}(q_{i})}{\partial q_{i}}\left[\alpha Jobs_{i}+(1-\alpha)Emissions_{i}\right]=\lambda \qquad \forall i.$$
(1)

Equalize *marginal* damage from relocation across firms

Free permits should *not necessarily* be allocated to the firms with the highest propensity to relocate Φ . Optimality requires the regulator to equalize, across firms, the reduction in expected job losses and carbon leakage brought about by the last free permit allocated to each firm.

Solving for optimal allocations

Corner solutions \Rightarrow use dynamic programming in the cross section of firms

• For fixed (arbitrary) ordering of firms write the Bellman equation as

$$V_i(s_i) = \min_{0 \le q_i \le s_i} \Phi\left[-\pi_i(q_i)\right] \left[\alpha I_i + (1-\alpha)e_i\right] + V_{i+1}(s_i - q_i)$$

Dual program: Allocate a fixed pie of relocation risk so as to minimize total permits

- Invert $r(q_i)$ to get $q_i = \pi_i^{-1} \left[-\Phi_i^{-1} \left(\frac{r_i}{\alpha l_i + (1-\alpha)e_i} \right) \right]$, $(\Phi_i (-\pi_i(\cdot))$ strictly monotonic in q_i)
- Rewrite the dual program

$$\min_{\{r_i \ge 0\}} \sum_{i=1}^n \pi_i^{-1} \left[-\Phi_i^{-1} \left(\frac{r_i}{\alpha l_i + (1-\alpha)e_i} \right) \right] \text{ s. t. } \left(\sum_i r_i \le \bar{R} \right).$$

Solving for optimal allocations

Corner solutions \Rightarrow use dynamic programming in the cross section of firms

• For fixed (arbitrary) ordering of firms write the Bellman equation as

$$V_i(s_i) = \min_{0 \le q_i \le s_i} \Phi\left[-\pi_i(q_i)\right] \left[\alpha I_i + (1-\alpha)e_i\right] + V_{i+1}(s_i - q_i)$$

s_i: stock of permits when reaching firm i in the sequence and
V_{i+1} (s_i - q_i): value of leaving s_i - q_i permits to remaining firms in the sequence.

Dual program: Allocate a fixed pie of relocation risk so as to minimize total permits

- Invert $r(q_i)$ to get $q_i = \pi_i^{-1} \left[-\Phi_i^{-1} \left(\frac{r_i}{\alpha l_i + (1-\alpha)e_i} \right) \right]$, $\left(\Phi_i \left(-\pi_i(\cdot) \right)$ strictly monotonic in $q_i \right)$
- Rewrite the dual program

$$\min_{\{r_i \ge 0\}} \sum_{i=1}^n \pi_i^{-1} \left[-\Phi_i^{-1} \left(\frac{r_i}{\alpha l_i + (1-\alpha)e_i} \right) \right] \text{ s. t. } \left(\sum_i r_i \le \bar{R} \right).$$

Extra Slides

Marginal impact of free permits on relocation risk

- Do you expect that government efforts to put a price on carbon emissions will force you to outsource parts of the production on this business site in the foreseeable future, or to close down completely?"
- How would your answer to the previous question change if you received a free allowance for 80% of your current emissions?"

Scoring:

- Low(1): No impact of this kind
- Mid(3): Significant reduction (>10%) in production or employment due to outsourcing
- High(5): Complete close-down

score change with 80% free

Firm-specific relocation propensity

Linear approximation to profit function:
 π_i(q_i) = a_{0i} + a_{1i}q_i

• Logistic relocation probability $Pr(y_i = 1|q_i)$

$$=\Phi_{i}\left(-\pi_{i}(q_{i})\right)=\frac{1}{1+\exp\left(\beta_{0i}+\beta_{1i}q_{i}\right)_{i}}$$

where $\beta_{0i} \equiv \frac{a_{i0} + \mu_e}{\sigma_e}$ and $\beta_{1i} \equiv \frac{a_{1i}}{\sigma_e}$.

• Back out β_0 , β_1 using reported $\Phi_i(0)$ and $\Phi_i(0.8 \cdot e_i)$ where

Score	1	2	3	4	5
$\Phi(\cdot)$	0.01%	5%	10%	55%	99%

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Minimize cost

Minimize amount of free permits s.t. given relocation risk

Share of permits allocated for free

▲ ■ ▶ ■ ■ ■ ● Q @

Share of CO_2 at risk of leaking to non-EU countries

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Sample representativeness

	(1)		(2)
	(1)	(2)	(3)
	Turnover	Employment	Capital
A. All firms			
Firm contacted	-0.0322	-0.0794	0.172
	(0.0786)	(0.0611)	(0.108)
EU ETS firm	2.031***	1.452***	2.530***
	(0.095)	(0.080)	(0.145)
Number of observations	118,874	107,830	113,771
Number of firms	12,322	12,921	118,874
R-squared	0.511	0.364	12322
B. Contacted firms			
Firm granted interview	-0.0983	-0.0373	0.0443
	(0.118)	(0.0957)	(0.150)
EU ETS firm	2.044***	1.547***	2.540***
	(0.124)	(0.107)	(0.160)
Number of observations	26,114	23,933	25,815
Number of firms	1,373	1,420	1,297
R-squared	0.659	0.589	0.618

Notes: Regressions in panel A are based on the set of manufacturing firms with more than 50 employees contained in ORBIS for the six countries covered by the survey. Each column shows the results from a regression of the ORBIS variable given in the column head on a dummy variable indicating whether a firm was contacted or not and a dummy variable indicating whether a firm was taking part in the EU ETS at the time of the interviewing. Panel B shows analogous regressions for the set of contacted companies and with an indicator for whether an

Internal Validity Vulnerable firms have less market power and more non-EU competitors

Table: Correlations between vulnerability score and other survey variables

	(1)	(2)
	All firms	EU ETS firms
Cost pass-through (%)	-0.107***	-0.109*
Share of non-EU competitors (%)	0.141***	0.135**
Non-EU competitors	0.02	-0.06
Total competitors	0.02	-0.14
Share of sales exported to non EU (%)	-0.08	-0.03
Customers are other businesses (D)	0.105***	0.166***
Multinational firm (D)	0.01	-0.06
CC related products (S)	0.01	0.01
CC related product innovation (S)	-0.02	-0.04
CC related process innovation (S)	0.132***	0.108*
Energy monitoring (S)	0.169***	0.179***
Greenhouse gas monitoring (S)	0.168***	0.1
Energy consumption targets (S)	0.074*	0
Greenhouse gas targets (S)	0.207***	0.160***
Enforcement of targets (S)	0.120***	0.1
Employment	0.02	-0.06
EU ETS firm (D)	0.623***	

External Validity Firms in sectors with high vulnerability are more sensitive to energy prices

- HI_s : indicator that sector s is above the median vulnerability score (VS)
- p_{sct}^e : log energy price in sector s in country c and year t,

	(1)	(2)	(3)	(4)	(5)	(6)
	Δln(Emp			oloyment)		
	E	European Unic	n		OECD	
∆ln(Energy price)*(High VS)	-0.057***	-0.242***	-2.426***	-0.052***	-0.237***	-1.763***
	(0.009)	(0.041)	(0.320)	(0.008)	(0.033)	(0.242)
Δln(Energy price)	0.035***	0.065***	1.354***	0.034***	0.039***	0.694***
	(0.006)	(0.013)	(0.265)	(0.005)	(0.013)	(0.200)
High VS	-0.007	-0.180**	-1.066***	0.070	0.030	-0.172***
	(0.024)	(0.080)	(0.157)	(0.071)	(0.051)	(0.061)
Number of firms	93,831	93,831	93,831	129,867	129,867	129,867
Number of observations	407,905	407,905	407,905	516,128	516,128	516,128
R-squared (OLS and 1st stage)	0.039	0.727	0.718	0.034	0.695	0.682
Method	OLS	IV (1 lag)	IV (2 lags)	OLS	IV (1 lag)	IV (2 lags)

Vulnerability score averages

▲ロト ▲園ト ▲ヨト ▲ヨト 三国市 のへで

The EC criteria for exempting sectors from permit auctions

B. High Trade Intensity (TI) $TI = \frac{\text{exports non EU} + \text{imports non EU}}{\text{turnover EU} + \text{imports non EU}} > 30\%$

C. Intermediate CI and TI

 $5\% < Cl \le 30\%$ \cap $10\% < Tl \le 30\%$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Extra Slides

The EC criteria for exempting sectors from permit auctions

A. High Carbon Intensity (CI) $CI = \frac{\text{direct} + \text{indirect emissions of } CO_2[t]}{\text{gross value added } [€]} \cdot \frac{€30}{t} > 30\%$

B. High Trade Intensity (TI) $TI = \frac{\text{exports non EU} + \text{imports non EU}}{\text{turnover EU} + \text{imports non EU}} > 30\%$

C. Intermediate CI and T

 $5\% < CI \le 30\%$ \cap $10\% < TI \le 30\%$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

The EC criteria for exempting sectors from permit auctions

C. Intermediate CI and TI

 $5\% < CI \le 30\%$ \cap $10\% < TI \le 30\%$

Extra Slides

Minimal cost allocation vs. actual and proposed allocations Minimize cost holding fixed relocation risk

	Free allocation			EC proposal		
Program	Actual	Minim	al cost	Actual	Minim	al cost
Risk constraint	-	Jobs	CO2	-	Jobs	CO2
Firm allocation	100.0	17.1	26.1	92.6	0.3	21.0
Sector allocation	100.0	28.1	27.6	92.6	15.3	26.0

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Shares of emissions exempted from auctioning

	Impact Assessment Direct	CITL EU ETS/ORBIS	
	Emissions data	data	
Current EU criteria (A, B and C)	72.3%	84.8%	
A and B & CI>5	32.9%	48.9%	
A, B and C – but TI is with less developed	51.7%	73.9%	
countries			
Total emissions from non-power sectors (Million tons of CO_2 equ.)	833.98	748.19	

Make optimal allocation operational

Risk minimization program

$$\min_{\beta_{J},\beta_{E}} \sum_{i=1}^{n} risk_{i} \left(\frac{Jobs_{i}^{\beta_{J}} \cdot Emissions_{i}^{\beta_{E}}}{\sum_{i} Jobs_{i}^{\beta_{J}} \cdot Emissions_{i}^{\beta_{E}}} \cdot permit \ constraint \right).$$

▲□▶▲□▶▲≡▶▲≡▶ Ξ|= めぬ⊙

- Optimal weights: $\beta_{jobs} = 20\%$, $\beta_{emissions} = 80\%$
- Resulting job risk is close to that under the unconstrained optimal allocation (3.6% vs 3.5%)