

LEUVEN

CO₂ Abatement from RES Injections in the German Electricity Sector: Does a CO₂ Price Help?

Erik Delarue

With Hannes Weigt and Denny Ellerman

University of Leuven (KU Leuven), Energy Institute, Leuven, Belgium Contact: erik.delarue@mech.kuleuven.be

Overview

- Context and scope
- Model and scenarios
- Main results
- Emission interaction effect
- Conclusions and future research

Context and scope

- Current EU energy/environment policies:
 - ETS key instrument in CO₂ mitigation
 - In place since 2005
 - At same time targets for RES
 - Also (partly) aiming at reducing emissions
- Overlapping effects
 - Emissions are capped, RES do not "reduce" emissions
 - A purely redistributive effect
- Objective of this analysis:
 - Quantify the effects of ETS and RES of the last five years in Germany and provide an evaluation of the impact and efficiency of the instruments
 - How much CO₂ 'abatement' from RE injections?
 - Technical viewpoint
 - Complex interaction of fluctuating RE (e.g., wind), load, and merit order of existing capacity

Model

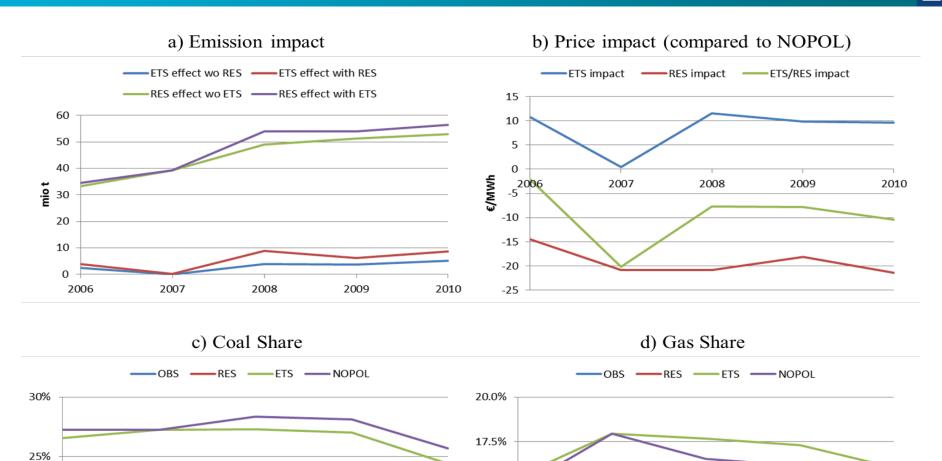
- Classic Unit Commitment Model of Germany:
 - Optimize electricity generation with a given set of power plants
 - Input
 - Detailed power plant fleet (capacity, efficiency, fuel usage, CO₂ emission factor, technology characteristics)
 - Observed hourly load and RE injections and average monthly fuel and EUA prices
 - Imports/Exports fixed to observed values
 - Minimizing total generation and start-up costs, with perfect foresight
 - Hourly resolution
 - · Pumped hydro storage endogenous
 - Output
 - Hourly generation and emissions on power plant level
 - 5 year framework (2006-2010)
- Model calibrated to observed electricity generation quantities by fuel (price results should be regarded with care)
 - Cost mark-ups
 - Availabilities

Scenarios

- OBS: The calibrated case with observed EUA prices and RE injections
- NOPOL: A no policy counterfactual with a zero EUA price and no RE injections
- ETS: The observed EUA price with no RE injections
- RES: Observed RE injections with a zero EUA price

Main results

Generation and emissions

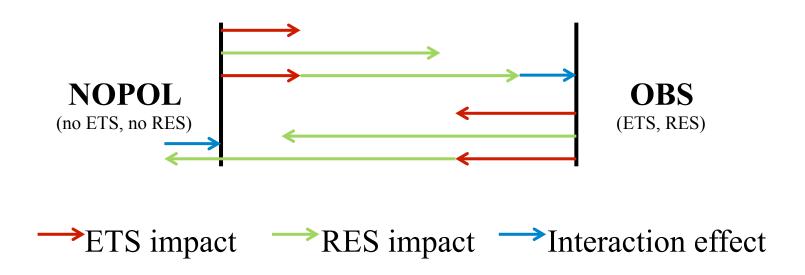

		2006		2007		2008		2009		2010	
		[unit]	[%]	[unit]	[%]	[unit]	[%]	[unit]	[%]	[unit]	[%]
		change in generation									
		[TWh]									
RES	RE injections	50	8%	64	10%	71	11%	74	12%	79	13%
	coal	-20	-11%	-18	-10%	-31	-17%	-34	-20%	-37	-23%
	gas	-25	-26%	-39	-34%	-35	-33%	-27	-28%	-25	-27%
ETS	coal	-4	-2%	0	0%	-7	-4%	-7	-4%	-8	-5%
	gas	4	5%	0	0%	7	7%	7	7%	8	9%
		change in CO2 emissions									
		[Mton]									
RES		-33	-10%	-39	-11%	-49	-14%	-51	-15%	-53	-15%
ETS		-3	-1%	0	0%	-4	-1%	-4	-1%	-5	-2%

relative to total (all fuels)
relative to generation from specific fuel

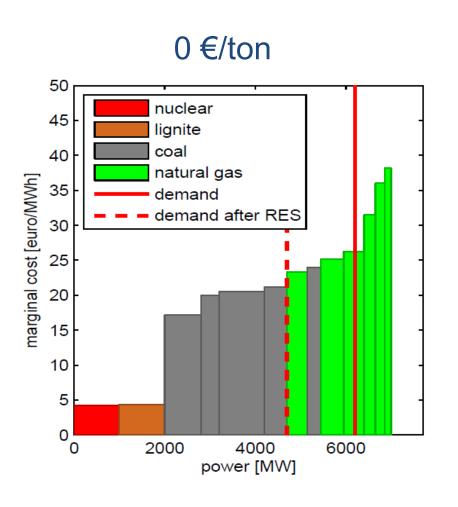
Main results

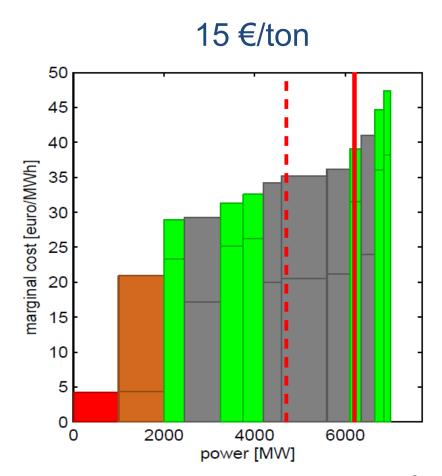
20%

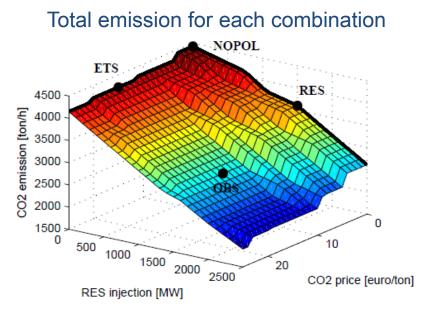
15%

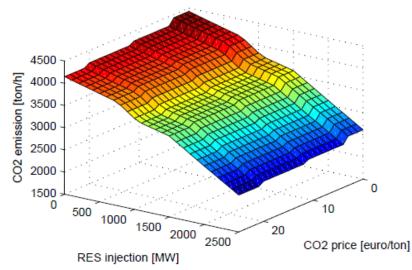


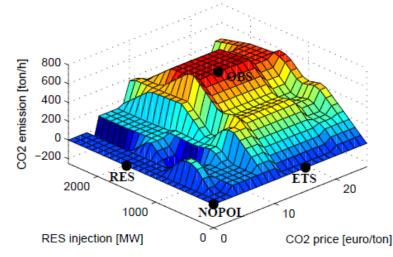
15.0%


12.5%

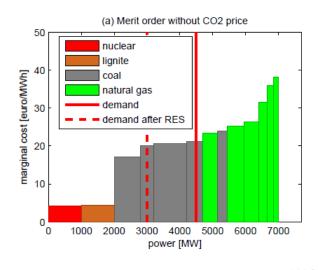

10.0%

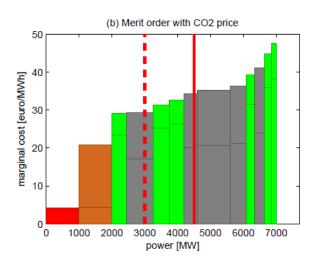

- Results indicate that impact of instrument is different when other instrument is present or not
 - Refer to this as 'interaction effect'

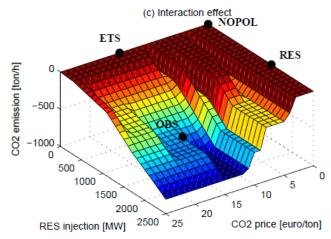

Illustrated by merit order of a methodological system



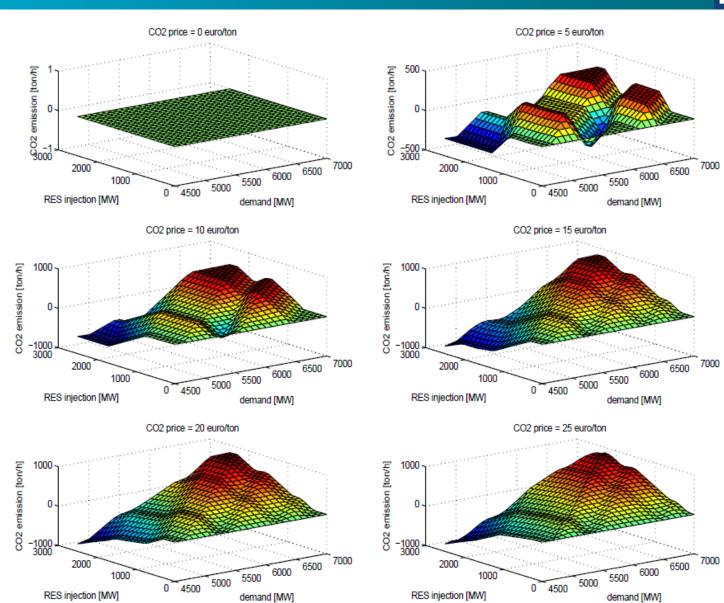
Total emission for reference plane





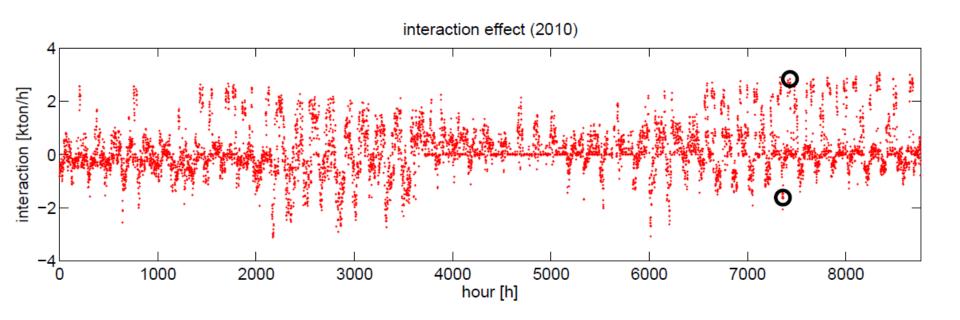
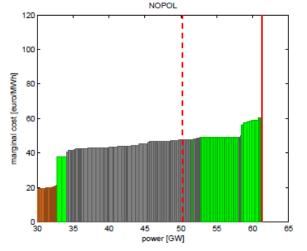
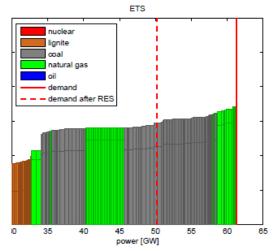


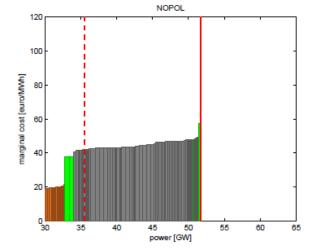
Subtracting plane 1 from plane 2

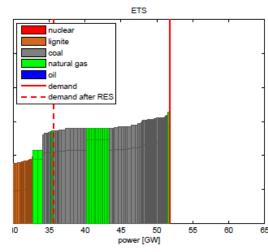

- Interaction effect dependent on reference demand
 - Could be negative

Interaction effect, as function of - RES injection and - demand, for different CO₂ prices

- Hourly interaction effect from simulation of Germany (2010)
 - Fluctuating heavily
 - Both positive and negative values


Illustration of interaction effect for 2 specific hours


Positive interaction effect

Negative interaction effect

Conclusions

- RE policy as implemented in Germany has a far greater effect on CO₂ emissions than the ETS
 - ~14% vs. 1-2%
 - About 2.5% of overall EUA demand
 - EUA price effects may be significant, especially when Spain and other MS's are included
- A CO₂ price will tend to augment the effect of RE injections but only so long as the demand is sufficiently high
 - Also a function of demand and fluctuating heavily over time
 - Still, the interaction effect is small in relation to reduction from displacing CO₂ emitting generation

Future analyses?

- Focus of this work is on emissions and generation
 - Geographic scope to be expanded
- How much is the EUA price being suppressed?
 - Need for marginal abatement cost curve
 - Price suppression could be significant
- What is the cost of CO₂ abated by RE injections?
 - Direct subsidy cost
 - Additional reserves costs and cost for back-up capacity
 - Merit order effects (the reduced wholesale price)
 - Allowance cost savings
- How much higher does EUA price need to be to bring on RE?