Near-term trade impacts of asymmetric climate change mitigation policies Misato Sato ESRC Centre for Climate Change Economics and Policy LSE Presentation at the 5th Atlantic Workshop on Energy and Environmental Economics 25th June 2012 Centre for Climate Change Economics and Policy ## Do heterogeneous carbon prices impact trade (export competitiveness of sectors) in the near-term? #### Background (1) - More and more carbon pricing policies being enacted globally. - Concerns about competitiveness and carbon leakage impacts need to be addressed, in order for leader countries to pursue stronger policies. - ▶ Estimation of carbon leakage effect from CGE and partial equilibrium models (e.g. Gerlagh & Kuik 2007, Babiker 2005) -> wide range of results (5-130%) - ▲ Lack of empirical evidence to date. #### Background (2) - ♦ Well established empirical literature impact of environmental regulation stringency on trade (e.g. Levinson and Taylor 2001, Cole and Elliott 2003). - Some recent econometric studies on climate policies: - Industrial energy prices impact on US industry Aldy and Pizer (2011) #### Data - ◆ Trade data from UN COMTRADE - bilateral trade data (values) for 53 countries including OECD plus major trading partners (2730 pairs of countries), 66 products, 11 years (2000-2011) - ▲ IEA Industrial energy prices and taxes. - industrial electricity prices as proxy of carbon prices - Electricity price gap $$epgap_{ijt} = ln(EP_{it}) - ln(EP_{jt})$$ ### Industrial electricity price variation across sample countries #### Model – fixed effect panel Basic model $$lnX_{ijt}^{s} = \beta_{0} + \beta_{1}epgap_{ijt} + \beta_{2}gdpsum_{ijt} + \beta_{3}gdpsim_{ijt} +$$ $$\beta_{4}lrfac_{ijt} + \sum_{p=1}^{n} \lambda_{p}lnX_{ij(t-p)}^{s} + \alpha_{t} + \omega_{ij}^{s} + \varepsilon_{ijt}$$ - Controls - Overall country size $gdpsum_{ijt} = ln(GDP_{it} + GDP_{jt})$ - Relative country size $gdpsim_{ijt} = ln \left[1 \left(\frac{GDP_{it}}{GDP_{it} + GDP_{jt}} \right)^2 \left(\frac{GDP_{jt}}{GDP_{it} + GDP_{jt}} \right)^2 \right]$ - Difference in factor endowments $$lrfac_{ijt} = \left| ln\left(\frac{GDP_{it}}{CAPITA_{it}}\right) - ln\left(\frac{GDP_{jt}}{CAPITA_{jt}}\right) \right|$$ #### Estimation results 1. All sectors | | (1)
OLS | (2)
Poisson | (3)
ppml | (4)
Arellano-Bond GMM | |------------------------------|-------------------|-------------------|-------------------|--------------------------| | Electricity price gap | 0.17***
(0.01) | 0.13***
(0.01) | 0.14***
(0.02) | 0.02
(0.02) | | Relative factor endownment | -0.24*** | -0.31*** | -0.07** | 0.06 | | | (0.03) | (0.03) | (0.02) | (0.05) | | GDP total | 0.68*** | 1.44*** | 0.30*** | 0.45*** | | | (0.05) | (0.07) | (0.07) | (0.10) | | GDP similarity | 1.07*** | 3.54*** | 0.50** | 0.96* | | | (0.24) | (0.32) | (0.19) | (0.46) | | trade_ij(t-1) | | | | 0.55*** | | | | | | (0.02) | | Country-Pair, sector effects | Yes | Yes | No | Yes | | Country-specific effects | No | No | Yes | No | | Year effects | Yes | Yes | Yes | Yes | | Observation number | 741387 | 724192 | 741387 | 318659 | #### Model – with sector group interactions Interacting sector with electricity price gap $$lnX_{ijt}^{s} = \beta_{0} + \beta_{1}epgap_{ijt} + \beta_{2}gdpsum_{ijt} + \beta_{3}lngdpsim_{)ijt} + \beta_{4}lrfac_{ijt} +$$ $$\phi SGROUP + \sum_{k=1}^{n=12} \gamma_{k}(SGROUP * epgap_{ijt}) +$$ $$\sum_{p=1}^{n} \lambda_{p}lnX_{ij(t-p)}^{s} + \alpha_{t} + \omega_{ij}^{s} + \varepsilon_{ijt}$$ ♦ SGROUPS: food; ore; fuel; raw material; non-ferrous metals; iron & steel; cement & glass; chemicals; semi-manufacturing; machinery; transport equipment; other manufacturing # Estimation results 2. Sectors interacted with EPGAP | | (1) | (2) | (3) | (4) | |------------------------------|---------|---------|----------|-------------------| | | OLS | Poisson | ppml | Arellano-Bond GMM | | EPGAP*FOOD | 0.33*** | 0.31*** | 0.35*** | 0.11 | | | (0.02) | (0.02) | | | | EPGAP* ORE | 0.12*** | 0.48*** | 0.43 | 0.11 | | | (0.05) | (0.05) | | | | EPGAP*FUEL | 0.52*** | 0.59*** | 0.26 | 0.12* | | | (0.06) | (0.05) | | | | EPGAP*NON-FERROUS | 0.38*** | 0.28*** | 0.48* | 0.88 | | | (0.06) | (0.04) | | | | EPGAP*IRON&STEEL | 0.05*** | 0.43*** | 0.35 | 0.17** | | | (0.06) | (0.03) | | | | EPGAP*CEMENT&GLASS | -0.08* | -0.06 | 0.00*** | 0.08*** | | | (0.04) | (0.03) | | | | EPGAP*CHEMICALS | 0.30*** | 0.26*** | 0.17*** | 0.21** | | | (0.02) | (0.02) | | | | EPGAP*SEMIMANUF | -0.00* | -0.05** | 0.07*** | 0.2*** | | | (0.02) | (0.02) | | | | EPGAP*MACHINERY | 0.17*** | -0.07 | 0.00*** | 0.05*** | | | (0.02) | (0.02) | | | | EPGAP*TRANSPORT | 0.38*** | 0.10*** | -0.05*** | 0.1*** | | | (0.04) | (0.03) | | | | EPGAP*CLOTHING | 0.10*** | -0.01 | 0.18** | 0.02* | | | (0.03) | (0.03) | | | | EPGAP*OTHERMANU | 0.19*** | 0.10*** | 0.06*** | 0.15*** | | | (0.02) | (0.02) | | | | EPGAP*RAW MATERIAL | -0.20** | -0.03 | 0.44 | -0.11 | | | (0.02) | (0.03) | | | | AR(1) | | | | -77.16 (0.00) | | AR(2) | | | | 0.15 (0.877) | | Country-Pair, sector effects | Yes | Yes | Yes | Yes | | Country-specific effects | No | No | No | No | | Year effects | Yes | Yes | Yes | Yes | | N | 741387 | 724192 | 741387 | 401828 | #### Semi elasticities by sector group #### Robustness checks - Dropping and including outliers - Using other energy price series instead of electricity price - ♦ Alternative measures of electricity price gap (pi-pj)/(pi+pj) - ♦ Including importer-time and exporter-time fixed effects - ♦ Alternative measure of the dependent variable weight of trade, rather than value #### Illustration – US exports to Spain - Between 2001 and 2008 - ♦ Spain's industrial electricity price increased 0.041 to 0.125 \$US/kWh - ♦ US prices increased from 0.05 to 0.068 \$US/ kWh - ▶ The logged ratio of electricity prices increased from -0.198 to 0.61=0.81%, or roughly 1%. - ♦ At the same time, US exports increased by 270% in value. - Our estimates predict only 0.2% #### Comments welcome m.sato1@lse.ac.uk Centre for Climate Change Economics and Policy #### Conclusions Semi-elasticities • Energy price differences have a higher impact on trade for energy intensive sectors. # My PhD "The role of trade in decarbonising global supply chains" - ▶ Paper 1. Measuring embodied emissions in international trade: A quantitative review of the literature - ◆ Paper 2. Embodied carbon flows in trade: A study drawing on bilateral trade data - ▶ Paper 3. Near-term trade impacts of asymmetric climate change mitigation policies - Paper 4. (Sector case study) #### Final steps - Over-estimation due to selection issue (20% zeros in dependent variable) - Zero inflated models (negative binomial and poisson) - ♦ But need to control for FE -> computational issues - → ->Blundell pre sample mean scaling estimator ♦ Write up! # Relevant literature (1) Empirical literature on near-term trade impacts of asymmetric environmental regulation - Challenging to evaluate empirically due to: - Many factors mitigate/dominate the effect of environmental regulation (e.g. transport costs, labour costs, resource availability, exchange rate risk etc.). - Poor indicators of policy stringency - ♦ Abatement cost (PACE) e.g. Levinson and Taylor (2008), but endogeneity problem. - ♦ Kyoto protocol (Achiele and Felbermayr 2010) ## Relevant literature (2) Trade impacts of climate policies - Carbon leakage studies using CGE models (Gerlagh and Kuik 2007, Babiker 2005 etc) - ♦ A wide range of results (5-130%) - ♦ Partial equilibrium models (e.g. Demailly and Quirion 2008) - Steel 10-30% and Cement 5-10% (assuming 20EUR/tCO2) - ▲ Literature has identified a handful of sectors where a high carbon prices could affect them. (Hourcade et al 2008, Oeko 2009) - Econometric studies: - Kyoto Protocol Annex B vs non Annex B. e.g. Achiele and Felbermayr (2010) - ♦ Industrial energy prices e.g. Aldy and Pizer (2011). ### Industrial electricity price gap In the case of Japan's imports fro UK #### Key contributions of this paper - Empirically analyses carbon leakage effect by using a novel approach using energy prices to proxy the impact of carbon prices - ▲ Large dataset. - Estimations by sector.