Minimax Regret Discounting

Terrence Iverson

Department of Economics
Colorado State University
June 2012

Constant exponential discounting unsettling for long-lived environmental problems

(1) Choice of discount rate all important

	\$1 in 10 years	\$1 in 100 years
1\% disc rate		
4\% disc rate		
Difference:		

Constant exponential discounting unsettling for long-lived environmental problems

(1) Choice of discount rate all important

	\$1 in 10 years	\$1 in $\mathbf{1 0 0}$ years
1\% disc rate	90 cents	
4\% disc rate	67 cents	
Difference:	1.4 times	

Constant exponential discounting unsettling for long-lived environmental problems

(1) Choice of discount rate all important

	\$1 in 10 years	\$1 in $\mathbf{1 0 0}$ years
1\% disc rate	90 cents	37 cents
4\% disc rate	67 cents	1.8 cents
Difference:	1.4 times	Over 20 times

Constant exponential discounting unsettling for long-lived environmental problems

(1) Choice of discount rate all important

	\$1 in 10 years	\$1 in $\mathbf{1 0 0}$ years
1\% disc rate	90 cents	37 cents
4\% disc rate	67 cents	1.8 cents
Difference:	1.4 times	Over 20 times

(2) Distant consequences irrelevant

Constant exponential discounting unsettling for long-lived environmental problems

(1) Choice of discount rate all important

	\$1 in 10 years	\$1 in $\mathbf{1 0 0}$ years
1\% disc rate	90 cents	37 cents
4\% disc rate	67 cents	1.8 cents
Difference:	1.4 times	Over 20 times

(2) Distant consequences irrelevant
(3) Relative valuations "feel" implausible

Constant exponential discounting unsettling for long-lived environmental problems

(1) Choice of discount rate all important

	\$1 in 10 years	\$1 in $\mathbf{1 0 0}$ years
1\% disc rate	90 cents	37 cents
4\% disc rate	67 cents	1.8 cents
Difference:	1.4 times	Over 20 times

(2) Distant consequences irrelevant
(3) Relative valuations "feel" implausible

Declining discount rates (DDRs) do better on all three

Uncertainty-based normative case for DDRs

Weitzman (1998)
 If consumption discount rate (CDR) uncertain and apply Savage axioms (max EU) then certainty-equivalent CDRs decline to lowest possible rate

But estimating probabilities a challenge

Sources of uncertainty

Consumption
growth

Intertemporal preferences

Weitzman (2001)
Newell-Pizer (2003)
X X X

But estimating probabilities a challenge

Sources of uncertainty

But estimating probabilities a challenge

Sources of uncertainty

Assume complete ignorance

- Policymakers face a set of welfare specifications, no basis for assigning probabilities
\rightsquigarrow Decision under Knightian uncertainty

Assume complete ignorance

- Policymakers face a set of welfare specifications, no basis for assigning probabilities
\rightsquigarrow Decision under Knightian uncertainty
- Minimax regret:

$$
\min _{a \in A} \max _{\gamma \in \Gamma} R(a, \gamma),
$$

where

$$
R(a, \gamma)=\left[\max _{a \in A} W(a, \gamma)\right]-W(a, \gamma)
$$

Justification for minimax regret

- Axiomatic foundations
(Milnor 1954, Hayashi 2008, Stoye 2011)

Justification for minimax regret

- Axiomatic foundations
(Milnor 1954, Hayashi 2008, Stoye 2011)
- Equally balances concern about "doing too little" with concern about "doing too much" (Iverson and Perrings 2011)

Theory

Overall result
Minimax regret discounting mimics a criterion that maximizes PV of future utility with a path of certainty-equivalent discount rates that converges to the lowest possible rate

Theory

Proposition 1: "as if" implicit prior

Consider a set of discounting models $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{m}\right\}$

- $W(a, \gamma)$ concave in a
- Set of feasible policies convex and compact

Then, there exists a prior $\pi=\left(\pi_{1}, \ldots, \pi_{m}\right)$ such that MR maximizes

$$
E^{\pi} W(a, \gamma)=\sum_{i=1}^{m} \pi_{i} W(a, \gamma)
$$

Theory

Proposition 2

The implicit minimax regret prior puts positive weight on the lowest discount rate model

Application

- Calibrate expert disagreement to match Stern-Nordhaus debate
- Stern CDR: about 1.4\%
- Nordhaus CDR: about 4.3\%

Application

- Calibrate expert disagreement to match Stern-Nordhaus debate
- Stern CDR: about 1.4\%
- Nordhaus CDR: about 4.3\%
- Solve for minimax regret solution in DICE (Nordhaus 2008)

Application

- Calibrate expert disagreement to match Stern-Nordhaus debate
- Stern CDR: about 1.4\%
- Nordhaus CDR: about 4.3\%
- Solve for minimax regret solution in DICE (Nordhaus 2008)

The implicit MR prior puts positive weight on extreme models only:
$\hat{\pi}$ on the Stern model,
$1-\hat{\pi}$ on the Nordhaus model

Solving for minimax regret

Solving for minimax regret

The effective CDR

Conclusion

- Reinforces Weitzman's (1999) limiting result

Conclusion

- Reinforces Weitzman's (1999) limiting result
- Provides concrete resolution to discount rate uncertainty when prior unavailable

Conclusion

- Reinforces Weitzman's (1999) limiting result
- Provides concrete resolution to discount rate uncertainty when prior unavailable
- Quantitatively interesting: Applied to Stern-Nordhaus, effective CDR converges to Stern CDR within 200 years

BACKUP

Time Inconsistency

Accommodating Time Inconsistency

- Consider alternative formulation to avoid time inconsistency concern

Accommodating Time Inconsistency

- Consider alternative formulation to avoid time inconsistency concern
- Accounting for time inconsistency increases near term abatement, so original formulation can be viewed as a lower bound

