Minimax Regret Discounting

Terrence Iverson

Department of Economics
Colorado State University

June 2012
Constant exponential discounting unsettling for long-lived environmental problems

Choice of discount rate all important

<table>
<thead>
<tr>
<th></th>
<th>$1 in 10 years</th>
<th>$1 in 100 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% disc rate</td>
<td>$1 in 10 years</td>
<td>$1 in 100 years</td>
</tr>
<tr>
<td>4% disc rate</td>
<td>90 cents</td>
<td>37 cents</td>
</tr>
<tr>
<td>Difference:</td>
<td>1.4 times</td>
<td>Over 20 times</td>
</tr>
</tbody>
</table>

Declining discount rates (DDRs) do better on all three.
Constant exponential discounting unsettling for long-lived environmental problems

Choice of discount rate all important

<table>
<thead>
<tr>
<th></th>
<th>$1 in 10 years</th>
<th>$1 in 100 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% disc rate</td>
<td>90 cents</td>
<td></td>
</tr>
<tr>
<td>4% disc rate</td>
<td>67 cents</td>
<td>1.8 cents</td>
</tr>
<tr>
<td>Difference:</td>
<td>1.4 times</td>
<td></td>
</tr>
</tbody>
</table>

Distant consequences irrelevant

Relative valuations “feel” implausible

Declining discount rates (DDRs) do better on all three
Constant exponential discounting unsettling for long-lived environmental problems

Choice of discount rate all important

<table>
<thead>
<tr>
<th></th>
<th>$1 in 10 years</th>
<th>$1 in 100 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% disc rate</td>
<td>90 cents</td>
<td>37 cents</td>
</tr>
<tr>
<td>4% disc rate</td>
<td>67 cents</td>
<td>1.8 cents</td>
</tr>
<tr>
<td>Difference:</td>
<td>1.4 times</td>
<td>Over 20 times</td>
</tr>
</tbody>
</table>

Distant consequences irrelevant

Relative valuations “feel” implausible

Declining discount rates (DDRs) do better on all three
Constant exponential discounting unsettling for long-lived environmental problems

1 Choice of discount rate all important

<table>
<thead>
<tr>
<th></th>
<th>$1 in 10 years</th>
<th>$1 in 100 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% disc rate</td>
<td>90 cents</td>
<td>37 cents</td>
</tr>
<tr>
<td>4% disc rate</td>
<td>67 cents</td>
<td>1.8 cents</td>
</tr>
<tr>
<td>Difference:</td>
<td>1.4 times</td>
<td>Over 20 times</td>
</tr>
</tbody>
</table>

2 Distant consequences irrelevant
Constant exponential discounting unsettling for long-lived environmental problems

1. Choice of discount rate all important

<table>
<thead>
<tr>
<th></th>
<th>$1 in 10 years</th>
<th>$1 in 100 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% disc rate</td>
<td>90 cents</td>
<td>37 cents</td>
</tr>
<tr>
<td>4% disc rate</td>
<td>67 cents</td>
<td>1.8 cents</td>
</tr>
<tr>
<td>Difference:</td>
<td>1.4 times</td>
<td>Over 20 times</td>
</tr>
</tbody>
</table>

2. Distant consequences irrelevant

3. Relative valuations “feel” implausible
Constant exponential discounting unsettling for long-lived environmental problems

1. Choice of discount rate all important

<table>
<thead>
<tr>
<th></th>
<th>$1 in 10 years</th>
<th>$1 in 100 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% disc rate</td>
<td>90 cents</td>
<td>37 cents</td>
</tr>
<tr>
<td>4% disc rate</td>
<td>67 cents</td>
<td>1.8 cents</td>
</tr>
<tr>
<td>Difference:</td>
<td>1.4 times</td>
<td>Over 20 times</td>
</tr>
</tbody>
</table>

2. Distant consequences irrelevant

3. Relative valuations “feel” implausible

Declining discount rates (DDRs) do better on all three
Weitzman (1998)

If consumption discount rate (CDR) uncertain and apply Savage axioms (max EU) then certainty-equivalent CDRs decline to lowest possible rate
But estimating probabilities a challenge

<table>
<thead>
<tr>
<th>Sources of uncertainty</th>
<th>Consumption growth</th>
<th>Intertemporal preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weitzman (2001)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Newell-Pizer (2003)</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
But estimating probabilities a challenge

<table>
<thead>
<tr>
<th>Sources of uncertainty</th>
<th>Consumption growth</th>
<th>Intertemporal preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weitzman (2001)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Newell-Pizer (2003)</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Assigning probabilities hard
But estimating probabilities a challenge

Sources of uncertainty

<table>
<thead>
<tr>
<th></th>
<th>Consumption growth</th>
<th>Intertemporal preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weitzman (2001)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Newell-Pizer (2003)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>This paper</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Assigning probabilities hard
Assume complete ignorance

- Policymakers face a set of welfare specifications, no basis for assigning probabilities

→ Decision under Knightian uncertainty

\[
\min_{a \in A} \max_{\gamma \in \Gamma} R(a, \gamma),
\]

where

\[
R(a, \gamma) = \left[\max_{a \in A} W(a, \gamma) \right] - W(a, \gamma).
\]
Policymakers face a set of welfare specifications, no basis for assigning probabilities

\[\rightarrow \text{Decision under Knightian uncertainty} \]

\[\text{Minimax regret:} \]

\[
\min \max_{a \in A} R(a, \gamma), \quad \forall \gamma \in \Gamma
\]

where

\[
R(a, \gamma) = \left[\max_{a \in A} W(a, \gamma) \right] - W(a, \gamma).
\]
Justification for minimax regret

- Axiomatic foundations
 (Milnor 1954, Hayashi 2008, Stoye 2011)
Justification for minimax regret

- Axiomatic foundations
 (Milnor 1954, Hayashi 2008, Stoye 2011)

- Equally balances concern about “doing too little” with concern about “doing too much”
 (Iverson and Perrings 2011)
Minimax regret discounting mimics a criterion that maximizes PV of future utility with a path of certainty-equivalent discount rates that converges to the lowest possible rate.
Proposition 1: “as if” implicit prior

Consider a set of discounting models \(\Gamma = \{\gamma_1, \ldots, \gamma_m\} \)

- \(W(a, \gamma) \) concave in \(a \)
- Set of feasible policies convex and compact

Then, there exists a prior \(\pi = (\pi_1, \ldots, \pi_m) \)

such that MR maximizes

\[
E^\pi W(a, \gamma) = \sum_{i=1}^{m} \pi_i W(a, \gamma).
\]
The implicit minimax regret prior puts positive weight on the lowest discount rate model.
Calibrate expert disagreement to match Stern–Nordhaus debate

- Stern CDR: about 1.4%
- Nordhaus CDR: about 4.3%
Application

- Calibrate expert disagreement to match Stern–Nordhaus debate
 - Stern CDR: about 1.4%
 - Nordhaus CDR: about 4.3%

- Solve for minimax regret solution in DICE (Nordhaus 2008)
Application

- Calibrate expert disagreement to match Stern–Nordhaus debate
 - Stern CDR: about 1.4%
 - Nordhaus CDR: about 4.3%

- Solve for minimax regret solution in DICE (Nordhaus 2008)

The implicit MR prior puts positive weight on extreme models only:

\[\hat{\pi} \] on the Stern model,
\[1 - \hat{\pi} \] on the Nordhaus model
Solving for minimax regret

\[\hat{\pi} = 0.27 \]
Solving for minimax regret

- Stern
- \(p_S = 0.8 \)
- \(p_S = 0.6 \)
- \(p_S = 0.4 \)
- Minimax regret
- \(p_S = 0.2 \)
- Nordhaus
The effective CDR

Consumption discount rate (percent per year)

- Nordhaus
- Minimax regret
- Stern
Conclusion

- Reinforces Weitzman’s (1999) limiting result
Conclusion

- Reinforces Weitzman’s (1999) limiting result
- Provides concrete resolution to discount rate uncertainty when prior unavailable

Quantitatively interesting: Applied to Stern–Nordhaus, effective CDR converges to Stern CDR within 200 years
Conclusion

- Reinforces Weitzman’s (1999) limiting result
- Provides concrete resolution to discount rate uncertainty when prior unavailable
- **Quantitatively interesting:** Applied to Stern–Nordhaus, effective CDR converges to Stern CDR within 200 years
BACKUP
Time Inconsistency

- MR computed in 2015
- MR re-computed in 2065
Accommodating Time Inconsistency

- Consider alternative formulation to avoid time inconsistency concern
Accommodating Time Inconsistency

- Consider alternative formulation to avoid time inconsistency concern
- Accounting for time inconsistency increases near term abatement, so original formulation can be viewed as a lower bound