Minimax Regret Discounting

Terrence Iverson

Department of Economics Colorado State University

June 2012

	\$1 in 10 years	\$1 in 100 years
1% disc rate		
4% disc rate		
Difference:		

	\$1 in 10 years	\$1 in 100 years
1% disc rate	90 cents	
4% disc rate	67 cents	
Difference:	1.4 times	

	\$1 in 10 years	\$1 in 100 years
1% disc rate	90 cents	37 cents
4% disc rate	67 cents	1.8 cents
Difference:	1.4 times	Over 20 times

Choice of discount rate all important

	\$1 in 10 years	\$1 in 100 years
1% disc rate	90 cents	37 cents
4% disc rate	67 cents	1.8 cents
Difference:	1.4 times	Over 20 times

2 Distant consequences irrelevant

	\$1 in 10 years	\$1 in 100 years
1% disc rate	90 cents	37 cents
4% disc rate	67 cents	1.8 cents
Difference:	1.4 times	Over 20 times

- ② Distant consequences irrelevant
- Relative valuations "feel" implausible

Choice of discount rate all important

	\$1 in 10 years	\$1 in 100 years
1% disc rate	90 cents	37 cents
4% disc rate	67 cents	1.8 cents
Difference:	1.4 times	Over 20 times

- ② Distant consequences irrelevant
- Relative valuations "feel" implausible

Declining discount rates (DDRs) do better on all three

Uncertainty-based normative case for DDRs

Weitzman (1998)

If consumption discount rate (CDR) uncertain and apply Savage axioms (max EU) then certainty-equivalent CDRs decline to lowest possible rate

But estimating probabilities a challenge

Sources of uncertainty

Consumption growth

Х

Intertemporal preferences

Weitzman (2001) X X

Newell-Pizer (2003)

But estimating probabilities a challenge

Sources of uncertainty

But estimating probabilities a challenge

Sources of uncertainty

Assume complete ignorance

 Policymakers face a set of welfare specifications, no basis for assigning probabilities

~> Decision under Knightian uncertainty

Assume complete ignorance

 Policymakers face a set of welfare specifications, no basis for assigning probabilities

~ Decision under Knightian uncertainty

Minimax regret:

 $\min_{a\in A}\max_{\gamma\in\Gamma}R(a,\gamma),$

where

$$R(a,\gamma) = \left[\max_{a\in A} W(a,\gamma)\right] - W(a,\gamma).$$

Justification for minimax regret

 Axiomatic foundations (Milnor 1954, Hayashi 2008, Stoye 2011)

Justification for minimax regret

- Axiomatic foundations (Milnor 1954, Hayashi 2008, Stoye 2011)
- Equally balances concern about "doing too little" with concern about "doing too much" (Iverson and Perrings 2011)

Theory

Overall result

Minimax regret discounting mimics a criterion that maximizes PV of future utility with a path of certainty-equivalent discount rates that converges to the lowest possible rate

Proposition 1: "as if" implicit prior

Consider a set of discounting models $\Gamma = \{\gamma_1, ..., \gamma_m\}$

- $W(a, \gamma)$ concave in a
- Set of feasible policies convex and compact

Then, there exists a prior $\pi = (\pi_1, ..., \pi_m)$ such that MR maximizes

$$E^{\pi}W(a,\gamma)=\sum_{i=1}^m\pi_iW(a,\gamma).$$

Proposition 2

The implicit minimax regret prior puts positive weight on the lowest discount rate model

Application

- Calibrate expert disagreement to match Stern–Nordhaus debate
 - Stern CDR: about 1.4%
 - Nordhaus CDR: about 4.3%

Application

- Calibrate expert disagreement to match Stern–Nordhaus debate
 - Stern CDR: about 1.4%
 - Nordhaus CDR: about 4.3%
- Solve for minimax regret solution in DICE (Nordhaus 2008)

Application

- Calibrate expert disagreement to match Stern–Nordhaus debate
 - Stern CDR: about 1.4%
 - Nordhaus CDR: about 4.3%
- Solve for minimax regret solution in DICE (Nordhaus 2008)

The implicit MR prior puts positive weight on extreme models only:

 $\hat{\pi}$ on the Stern model,

 $1 - \hat{\pi}$ on the Nordhaus model

Solving for minimax regret

Solving for minimax regret

The effective CDR

• Reinforces Weitzman's (1999) limiting result

Conclusion

- Reinforces Weitzman's (1999) limiting result
- Provides concrete resolution to discount rate uncertainty when prior unavailable

Conclusion

- Reinforces Weitzman's (1999) limiting result
- Provides concrete resolution to discount rate uncertainty when prior unavailable
- Quantitatively interesting: Applied to Stern–Nordhaus, effective CDR converges to Stern CDR within 200 years

BACKUP

Time Inconsistency

Accommodating Time Inconsistency

 Consider alternative formulation to avoid time inconsistency concern

Accommodating Time Inconsistency

- Consider alternative formulation to avoid time inconsistency concern
- Accounting for time inconsistency increases near term abatement, so original formulation can be viewed as a lower bound