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REFRESHER ON RESOURCE ECONOMICS

The Hotelling Rule with a backstop technology (Hoel, 1978)
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ṀR
MR

= ρ

∫ T

0
q(t) dt = S0



Preliminaries Model Social optimum Nash Equilibrium Pollution and extraction costs

DEMAND AND MARGINAL REVENUE
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SUBSTITUTE DEVELOPMENT

Dasgupta et al. (1983), Gallini et al. (1983)
Importer leads: strategic considerations may delay or bring
forward date of innovation—to motivate more favourable oil
pricing.

Harris & Vickers (1995)
Stochastic, catastrophic innovation. R&D occurs continuously,
but effect arrives discretely.

Gerlagh & Liski (2011)
Importer chooses when to trigger a crash R&D program. De-
lay to innovation acts as a commitment device, with oil supply
increasing to compensate importer for the transition period.
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SUBSTITUTE DEVELOPMENT

Tsur & Zemel (2003)
Social planner conducts gradual development of a substitute.
With exogenous cap, R&D should start immediately and at a
maximal rate.

Van der Ploeg & Withagen (forthcoming)
A cheaper, clean substitute means that more of a polluting re-
source is locked underground.
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INNOVATION OF THE PRESENT PAPER

I Gradual R&D process due to convex per-period research
costs

I Explicit consideration of a pollution externality
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CONCLUSIONS

I Gradual development of substitutes may yield
non-monotonic extraction

I Delaying R&D may be used as a credible device to drive
down oil prices; high oil prices imply future supply is
more plentiful, necessitating less R&D

I With physical exhaustion, climate change implies less
R&D should be undertaken

I With economic exhaustion, climate change implies
eventual crash R&D program to shut out polluting
resource; initially, optimal R&D may be lower
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THE MODEL

Exhaustible resource
Stock S(t), S(0) = S0
Flow qF(t)
Extraction costless

Substitute technology (’backstop’)
Flow qB(t)
Marginal cost x

(K(t)), x′ < 0, x′′ ≥ 0

Produced competitively

Knowledge
Stock K(t), K(0) = 0
Initial backstop cost: x ≡ x(0)
Bounded below: limK→∞ x(K) = x
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THE MODEL

R&D process
R&D intensity K̇ = d(t)
Convex (flow) costs: c(d), c′ ≥ 0, c′′ ≥ 0, c′(0) = 0, c(0) = 0

Quasilinear utility
u(qF + qB) + M, u′ > 0, u′′ < 0
Concave revenues: u′′′ + 2u′′ < 0
Backstop used eventually: limq→0 u′(q) > x
Discount rate ρ

Inverse demand for resource
p(qF,K) = min{u′(qF), x(K)}
Backstop supplies excess demand: qB(K, qF) = u′−1(p)− qF
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SOCIAL PLANNER’S PROBLEM

max
qF,qB,d

∫ ∞
0

e−ρt (u(qF + qB)− x(K)qB − c(d)) dt

s.t. Ṡ = −qF, S(0) = S0, S ≥ 0

K̇ = d, K(0) = 0
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FIRST-ORDER CONDITIONS

u′(qF + qB) ≤ λS, qF ≥ 0, C.S.
u′(qF + qB) ≤ x(K), qB ≥ 0, C.S.

c′(d) ≤ λK, d ≥ 0, C.S.

λ̇S = ρλS

λ̇K = ρλK + qBx′(K)

lim
t→∞

e−ρtλS(t)S(t) = 0

lim
t→∞

e−ρtλK(t)K(t) = 0

NB. The marginal value of knowledge is given by

λK(t) =

∫ ∞
t

e−ρ(s−t)qB(s)x′(K(s)) ds
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THE TERMINAL PATH

Def. The terminal path describes the R&D process d(t), K(t),
λK(t) without the resource: S0 = 0. As K(t) is increasing,
denote:

d∞(K), λ∞K (K)
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SOCIAL OPTIMUM
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SOCIAL OPTIMUM

Comparative statics 1: ρ ↑

Backstop price at switch ↑; at least one of the assets will be accu-
mulated slower / decumulated faster.

dx(t∗)
dρ

> 0

dt∗

dρ
< 0⇒ dqF(0)

dρ
> 0

dt∗

dρ
> 0⇒ dd(0)

dρ
< 0.
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SOCIAL OPTIMUM

Comparative statics 2: S(0) ↑

Higher initial extraction, lower initial R&D, delay in switch

dqF(0)

dS0
> 0

dd(0)

dS0
< 0

dt∗

dS0
> 0
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SOCIAL OPTIMUM

Comparative statics 3: K(0) ↑

Higher initial extraction, earlier switch

dqF(0)

dK0
> 0

dt∗

dK0
< 0
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OBJECTIVE FUNCTIONS

The exporter solves

max
qF

∫ ∞
0

e−ρtqFpF(qF; K) dt

The importer solves

max
d

∫ ∞
0

e−ρt (u(qF + qB)− pF(qF; K)qF − x(K)qB − c(d)) dt
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EQUILIBRIUM CONCEPT

Precommitment (open-loop) strategies:

qF = qF(t)
d = d(t)

Markovian (closed-loop / feedback) strategies:

qF = qF(K,S)

d = d(K,S)

NB. Open-loop equilibrium not unique! I will focus on a
time-consistent case.
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PRECOMMITMENT EQUILIBRIUM
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PRECOMMITMENT EQUILIBRIUM

Non-uniqueness of open-loop equilibrium.

Hamiltonian not differentiable due to discontinuity in backstop
demand!

λ̇K

λK
∈
[
ρ+

qFx′(K)

λK
, ρ

]
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PRECOMMITMENT EQUILIBRIUM

Let ε(q) ≡ dq
dp

p
q .

ε′(q) ≥ 0⇒ dNASH(0) > dSP(0)

ε′(q) ≤ 0⇒ qF, NASH(0) < qF, SP(0)

With isoelastic utility, both hold and backstop competitive too
early.
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PRECOMMITMENT EQUILIBRIUM

Comparative statics 1: ε′(q) = 0, S(0) ↑

Higher initial extraction, lower initial R&D, delay in switch

dqF(0)

dS0
> 0

dd(0)

dS0
< 0

dt∗

dS0
> 0

(as in the social optimum!)
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FEEDBACK EQUILIBRIUM

Exporter:

ρVE(K,S) = max
qF

{
R(qF) + d̃(K,S)VE

K(K,S)− qFVE
S (K,S)

}
Importer:

ρVI(K,S) = max
d

{
u(q̃F(K,S) + qB)− R(q̃F(K,S))− x(K)qB − c(d)

+ dVI
K(K,S)− q̃F(K,S)VI

S(K,S)

}

d∗ = d(VI
K), q∗F = qF(VE

S )
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FEEDBACK EQUILIBRIUM

The open-loop equilibrium is
subgame perfect in the limit-pricing
stage. Focus on this case!

Impose value function:
a) continuity along φ(K)
b) smoothness in (p < x).

Transform into rectangle:

s ≡ S− φ(K)

S− φ(K)

K

S

φ(K)

p < x

p = x

(S0, K0)

s

s

K

s = 0

s = 1
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FEEDBACK EQUILIBRIUM

Consider value fn’s vI(K, s), vE(K, s).

In the region p < x, solve:

ρvI = f I(vI
K, v

I
S, v

E
K, v

E
S)

ρvE = f E(vI
K, v

I
S, v

E
K, v

E
S)

using Chebyshev collocation.

K

S

φ(K)

p < x

p = x

(S0, K0)
s

s

K

s = 0

s = 1
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FEEDBACK EQUILIBRIUM

Functional forms:

u(q) =
q1− 1

η

1− 1
η

x(K) = x +
γ

2
(K − K)2

c(d) =
ξ

2
d2

K

S

φ(K)

p < x

p = x

(S0, K0)
s

s

K

s = 0

s = 1
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CLIMATE CHANGE WITHOUT EXTRACTION COSTS
The importer solves

max
d

∫ ∞
0

e−ρt (u(qF + qB)− pF(qF; K)qF − x(K)qB − c(d)− Z(G)) dt

+ Π∞(K(T))− Z(G)

ρ

Z′ > 0

Ġ = qF

qF(t) = 0, t > T
S(T) = 0

Assume limit pricing always.
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Ġ = qF

qF(t) = 0, t > T
S(T) = 0

Assume limit pricing always.



Preliminaries Model Social optimum Nash Equilibrium Pollution and extraction costs

CLIMATE CHANGE WITHOUT EXTRACTION COSTS

New EoM for λK:

λ̇K = ρλK + p−1(x)x′(K) + qFZ′(G)

Economy must end on terminal path at exhaustion!

K

λK

K
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CLIMATE CHANGE WITHOUT EXTRACTION COSTS

Prop. With physical exhaustion, with immediate limit pric-
ing, taking climate change into account implies R&D optimally
slows down.

K

λK

K
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ECONOMIC EXHAUSTION

The exporter’s problem:

max
qF

∫ ∞
0

e−ρt (qFpF(qF; K)− qFC(S)) dt

with C′ < 0.

Extraction profitable as long as x(K) ≥ C(S).
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ECONOMIC EXHAUSTION

Importer solves same problem as before, s.t. x(K(T)) = C(S(T)).
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ECONOMIC EXHAUSTION

Importer solves same problem as before, s.t. x(K(T)) = C(S(T)).

H = u(p−1(x))− x(K)p−1(x)− c(d) + λKd− (λS − λG)qF
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ECONOMIC EXHAUSTION

c′(d) = λK

λ̇K = ρλK + x′(K)
(

p−1(x) + (λS − λG)(p−1)′(x)
)

λ̇S = ρλS

λ̇G = ρλG + Z′(G)

λK(T) = λ∞K (K(T))− µx′(K)

λS(T) = µC′(S(T))

λG(T) = −Z′(G)

ρ

H(T) = ρ

(
π∞(K(T))− Z(G)

ρ

)
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ECONOMIC EXHAUSTION
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K



Preliminaries Model Social optimum Nash Equilibrium Pollution and extraction costs

ECONOMIC EXHAUSTION

Prop. With economic exhaustion, R&D will eventually exceed
the terminal path rate. Earlier, a phase may exist s.t. R&D is
below terminal path rate. At exhaustion, R&D rate jumps to the
terminal path rate.
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CONCLUSIONS

I Gradual development of substitutes may yield
non-monotonic extraction

I Delaying R&D may be used as a credible device to drive
down oil prices; high oil prices imply future supply is
more plentiful, necessitating less R&D

I With physical exhaustion, climate change implies less
R&D should be undertaken

I With economic exhaustion, climate change implies
eventual crash R&D program to shut out polluting
resource; initially, optimal R&D may be lower
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Thank you! Comments very welcome.

niko.jaakkola@economics.ox.ac.uk
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