Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

Strategic oil supply and gradual development of substitutes

Niko Jaakkola (niko.jaakkola@economics.ox.ac.uk)

Department of Economics, University of Oxford Oxford Centre for the Analysis of Resource Rich Economies

5th Atlantic Workshop on Energy and Environmental Economics, A Toxa, 25th June, 2012

000

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

◆□ > ◆□ > ◆ 臣 > ◆ 臣 > ◆ 臣 = • • ○ < ⊙

OUTLINE

Preliminaries

Model

Social optimum

Nash Equilibrium

Pollution and extraction costs

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
●0000	000	00000	00000000	000000

REFRESHER ON RESOURCE ECONOMICS

The Hotelling Rule with a backstop technology (Hoel, 1978)

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
●0000	000	00000	00000000	000000

REFRESHER ON RESOURCE ECONOMICS

The Hotelling Rule with a backstop technology (Hoel, 1978)

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

< □ > < @ > < E > < E > E のQ@

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
0000	000	00000	00000000	000000

< □ > < @ > < E > < E > E のQ@

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
0000	000	00000	00000000	000000

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
0000	000	00000	00000000	000000

< □ > < @ > < E > < E > E のQ@

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

SUBSTITUTE DEVELOPMENT

Dasgupta *et al.* (1983), Gallini *et al.* (1983) Importer leads: strategic considerations may delay or bring forward date of innovation—to motivate more favourable oil pricing.

Harris & Vickers (1995) Stochastic, catastrophic innovation. R&D occurs continuously, but effect arrives discretely.

Gerlagh & Liski (2011)

Importer chooses when to trigger a crash R&D program. Delay to innovation acts as a commitment device, with oil supply increasing to compensate importer for the transition period.

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

SUBSTITUTE DEVELOPMENT

Tsur & Zemel (2003)

Social planner conducts gradual development of a substitute. With exogenous cap, R&D should start immediately and at a maximal rate.

Van der Ploeg & Withagen (forthcoming)

A cheaper, clean substitute means that more of a polluting resource is locked underground.

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

INNOVATION OF THE PRESENT PAPER

 Gradual R&D process due to convex per-period research costs

< □ > < @ > < E > < E > E のQ@

Explicit consideration of a pollution externality

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
0000●	000	00000	000000000	

CONCLUSIONS

- Gradual development of substitutes may yield non-monotonic extraction
- Delaying R&D may be used as a credible device to drive down oil prices; high oil prices imply future supply is more plentiful, necessitating less R&D
- With physical exhaustion, climate change implies less R&D should be undertaken
- ► With economic exhaustion, climate change implies eventual crash R&D program to shut out polluting resource; initially, optimal R&D may be lower

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	•00	00000	00000000	000000

Exhaustible resource Stock S(t), $S(0) = S_0$ Flow $q_F(t)$ Extraction costless

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	● 00	00000	00000000	000000

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

The model

Exhaustible resource Stock S(t), $S(0) = S_0$ Flow $q_F(t)$ Extraction costless

Substitute technology ('backstop') Flow $q_B(t)$ Marginal cost x(t)Produced competitively

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	●00	00000	00000000	000000

The model

Exhaustible resource Stock S(t), $S(0) = S_0$ Flow $q_F(t)$ Extraction costless

Substitute technology ('backstop') Flow $q_B(t)$ Marginal cost $x(K(t)), x' < 0, x'' \ge 0$ Produced competitively

・ロト ・ 行下・ ・ 日 ト ・ 日 ト

= 900

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	●00	00000	00000000	000000

Exhaustible resource Stock S(t), $S(0) = S_0$ Flow $q_F(t)$ Extraction costless

Substitute technology ('backstop') Flow $q_B(t)$ Marginal cost $x(K(t)), x' < 0, x'' \ge 0$ Produced competitively

Knowledge Stock K(t), K(0) = 0Initial backstop cost: $\overline{x} \equiv x(0)$ Bounded below: $\lim_{K \to \infty} x(K) = \underline{x}$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Preliminaries 00000	Model o●o	Social optimum 00000	Nash Equilibrium 000000000	Pollution and extraction costs

R&D process R&D intensity $\dot{K} = d(t)$ Convex (flow) costs: c(d), $c' \ge 0$, $c'' \ge 0$, c'(0) = 0, c(0) = 0

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	o●o	00000	000000000	

R&D process R&D intensity $\dot{K} = d(t)$ Convex (flow) costs: c(d), $c' \ge 0$, $c'' \ge 0$, c'(0) = 0, c(0) = 0

◆ロト ◆帰 ト ◆ ヨ ト ◆ ヨ ト ● の Q ()

Quasilinear utility $u(q_F + q_B) + M, u' > 0, u'' < 0$ Concave revenues: u''' + 2u'' < 0Backstop used eventually: $\lim_{q\to 0} u'(q) > \overline{x}$ Discount rate ρ

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	o●o	00000	000000000	

The model

R&D process R&D intensity $\dot{K} = d(t)$ Convex (flow) costs: c(d), $c' \ge 0$, $c'' \ge 0$, c'(0) = 0, c(0) = 0

Quasilinear utility $u(q_F + q_B) + M, u' > 0, u'' < 0$ Concave revenues: u''' + 2u'' < 0Backstop used eventually: $\lim_{q\to 0} u'(q) > \overline{x}$ Discount rate ρ

Inverse demand for resource $p(q_F, K) = \min\{u'(q_F), x(K)\}$ Backstop supplies excess demand: $q_B(K, q_F) = {u'}^{-1}(p) - q_F$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・□ ◆ ○ ◆ ○

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	•0000 ⁻	00000000	000000

SOCIAL PLANNER'S PROBLEM

$$\max_{q_F,q_B,d} \int_0^\infty e^{-\rho t} \left(u(q_F + q_B) - x(K)q_B - c(d) \right) dt$$

s.t. $\dot{S} = -q_F$, $S(0) = S_0$, $S \ge 0$
 $\dot{K} = d$, $K(0) = 0$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

FIRST-ORDER CONDITIONS

$$u'(q_F + q_B) \le \lambda_S, \qquad q_F \ge 0, \quad C.S.$$

$$u'(q_F + q_B) \le x(K), \qquad q_B \ge 0, \quad C.S.$$

$$c'(d) \le \lambda_K, \qquad d \ge 0, \quad C.S.$$

$$\dot{\lambda}_S = \rho \lambda_S$$

$$\dot{\lambda}_K = \rho \lambda_K + q_B x'(K)$$

$$\lim_{\to \infty} e^{-\rho t} \lambda_S(t) S(t) = 0$$

$$\lim_{\to \infty} e^{-\rho t} \lambda_K(t) K(t) = 0$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ����

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

FIRST-ORDER CONDITIONS

$$\begin{split} u'(q_F + q_B) &\leq \lambda_S, & q_F \geq 0, \quad \text{C.S.} \\ u'(q_F + q_B) &\leq x(K), & q_B \geq 0, \quad \text{C.S.} \\ c'(d) &\leq \lambda_K, & d \geq 0, \quad \text{C.S.} \\ \dot{\lambda}_S &= \rho \lambda_S \\ \dot{\lambda}_K &= \rho \lambda_K + q_B x'(K) \\ \lim_{t \to \infty} e^{-\rho t} \lambda_S(t) S(t) &= 0 \\ \lim_{t \to \infty} e^{-\rho t} \lambda_K(t) K(t) &= 0 \end{split}$$

NB. The marginal value of knowledge is given by

$$\lambda_K(t) = \int_t^\infty e^{-\rho(s-t)} q_B(s) x'(K(s)) \, \mathrm{d}s$$

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

THE TERMINAL PATH

Def. *The terminal path* describes the R&D process d(t), K(t), $\lambda_K(t)$ without the resource: $S_0 = 0$. As K(t) is increasing, denote:

 $d^{\infty}(K), \quad \lambda_K^{\infty}(K)$

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

THE TERMINAL PATH

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

Comparative statics 1: $\rho \uparrow$

Backstop price at switch \uparrow ; at least one of the assets will be accumulated slower / decumulated faster.

$$\frac{\mathrm{d}x(t^*)}{\mathrm{d}\rho} > 0$$

$$rac{\mathrm{d}t^*}{\mathrm{d}
ho} < 0 \Rightarrow rac{\mathrm{d}q_F(0)}{\mathrm{d}
ho} > 0 \ rac{\mathrm{d}t^*}{\mathrm{d}
ho} > 0 \Rightarrow rac{\mathrm{d}d(0)}{\mathrm{d}
ho} < 0.$$

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	0000	00000000	000000

Comparative statics 2: $S(0) \uparrow$

Higher initial extraction, lower initial R&D, delay in switch

$$rac{{\mathrm d}q_F(0)}{{\mathrm d}S_0} > 0 \ rac{{\mathrm d}d(0)}{{\mathrm d}S_0} < 0 \ rac{{\mathrm d}t^*}{{\mathrm d}S_0} > 0$$

< □ ト < 団 ト < 三 ト < 三 ト < 三 ・ つへぐ</p>

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	0000	00000000	000000

Comparative statics 3: $K(0) \uparrow$

Higher initial extraction, earlier switch

$$rac{\mathrm{d} q_F(0)}{\mathrm{d} K_0} > 0$$
 $rac{\mathrm{d} t^*}{\mathrm{d} K_0} < 0$

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

OBJECTIVE FUNCTIONS

The exporter solves

$$\max_{q_F} \int_0^\infty e^{-\rho t} q_F p_F(q_F; K) \, \mathrm{d}t$$

The importer solves

$$\max_{d} \int_{0}^{\infty} e^{-\rho t} \left(u(q_{F} + q_{B}) - p_{F}(q_{F}; K)q_{F} - x(K)q_{B} - c(d) \right) dt$$

◆□ > ◆□ > ◆ 臣 > ◆ 臣 > ◆ 臣 = • • ○ < ⊙

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	0000000	000000

EQUILIBRIUM CONCEPT

Precommitment (open-loop) strategies:

 $q_F = q_F(t)$ d = d(t)

Markovian (closed-loop / feedback) strategies:

 $q_F = q_F(K, S)$ d = d(K, S)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	0000000	000000

EQUILIBRIUM CONCEPT

Precommitment (open-loop) strategies:

 $q_F = q_F(t)$ d = d(t)

Markovian (closed-loop / feedback) strategies:

 $q_F = q_F(K, S)$ d = d(K, S)

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

NB. Open-loop equilibrium not unique! I will focus on a time-consistent case.

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	0000000	000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

Non-uniqueness of open-loop equilibrium.

Hamiltonian not differentiable due to discontinuity in backstop demand!

$$\frac{\dot{\lambda}_K}{\lambda_K} \in \left[\rho + \frac{q_F x'(K)}{\lambda_K}, \rho
ight]$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

Let
$$\epsilon(q) \equiv \frac{dq p}{dp q}$$
.
 $\epsilon'(q) \ge 0 \Rightarrow d_{\text{NASH}}(0) > d_{\text{SP}}(0)$
 $\epsilon'(q) \le 0 \Rightarrow q_{F, \text{NASH}}(0) < q_{F, \text{SP}}(0)$

With isoelastic utility, both hold and backstop competitive too early.

< □ > < @ > < E > < E > E のQ@

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	000000000	000000

Comparative statics 1: $\epsilon'(q) = 0$, $S(0) \uparrow$

Higher initial extraction, lower initial R&D, delay in switch

$$rac{{\mathrm d}q_F(0)}{{\mathrm d}S_0} > 0 \ rac{{\mathrm d}d(0)}{{\mathrm d}S_0} < 0 \ rac{{\mathrm d}t^*}{{\mathrm d}S_0} > 0$$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

(as in the social optimum!)

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	000000000	000000

Exporter:

$$\rho V^E(K,S) = \max_{q_F} \left\{ R(q_F) + \tilde{d}(K,S) V^E_K(K,S) - q_F V^E_S(K,S) \right\}$$

Importer:

$$\rho V^{I}(K,S) = \max_{d} \left\{ u(\tilde{q}_{F}(K,S) + q_{B}) - R(\tilde{q}_{F}(K,S)) - x(K)q_{B} - c(d) + dV_{K}^{I}(K,S) - \tilde{q}_{F}(K,S)V_{S}^{I}(K,S) \right\}$$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	000000000	000000

Exporter:

$$\rho V^E(K,S) = \max_{q_F} \left\{ R(q_F) + \tilde{d}(K,S) V^E_K(K,S) - q_F V^E_S(K,S) \right\}$$

Importer:

$$\rho V^{I}(K,S) = \max_{d} \left\{ u(\tilde{q}_{F}(K,S) + q_{B}) - R(\tilde{q}_{F}(K,S)) - x(K)q_{B} - c(d) + dV_{K}^{I}(K,S) - \tilde{q}_{F}(K,S)V_{S}^{I}(K,S) \right\}$$

$$d^* = d(V_K^I), \qquad q_F^* = q_F(V_S^E)$$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	000000000	000000

The open-loop equilibrium is subgame perfect in the limit-pricing stage. Focus on this case!

・ロト ・ 何 ト ・ 三 ト ・ 三 ト

3

SQC

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	000000000	000000

The open-loop equilibrium is subgame perfect in the limit-pricing stage. Focus on this case!

Impose value function: a) continuity along $\phi(K)$ b) smoothness in (p < x).

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Sac

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	000000000	000000

The open-loop equilibrium is subgame perfect in the limit-pricing stage. Focus on this case!

Impose value function: a) continuity along $\phi(K)$ b) smoothness in (p < x).

Transform into rectangle:

$$s \equiv \frac{S - \phi(K)}{\overline{S} - \phi(K)}$$

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	000000000	000000

Consider value fn's
$$v^{I}(K,s)$$
, $v^{E}(K,s)$.

In the region p < x, solve:

$$\begin{split} \rho v^I = & f^I(v^I_K, v^I_S, v^E_K, v^E_S) \\ \rho v^E = & f^E(v^I_K, v^I_S, v^E_K, v^E_S) \end{split}$$

using Chebyshev collocation.

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	000000000	000000

Functional forms:

$$u(q) = \frac{q^{1-\frac{1}{\eta}}}{1-\frac{1}{\eta}}$$
$$x(K) = \underline{x} + \frac{\gamma}{2}(\overline{K} - K)^2$$
$$c(d) = \frac{\xi}{2}d^2$$

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

◆□ > ◆□ > ◆ 臣 > ◆ 臣 > ◆ 臣 = • • ○ < ⊙

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

Exporter Value

◆□ > ◆□ > ◆ 臣 > ◆ 臣 > ◆ 臣 = • • ○ < ⊙

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

Research investment (Reverse axes)

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

Oil extraction

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

Excess (relative) oil extraction under discretion (Reverse axes)

< □ > < @ > < E > < E > E のQ@

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

Excess (relative) importer value under discretion

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

00000 000 0000 0000 00000 00000 00000 0000	Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
	00000	000	00000	00000000	000000

Excess (relative) exporter value under discretion

◆□ > ◆□ > ◆ 臣 > ◆ 臣 > ◆ 臣 = • • ○ < ⊙

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	●00000

CLIMATE CHANGE WITHOUT EXTRACTION COSTS The importer solves

$$\max_{d} \int_{0}^{\infty} e^{-\rho t} \left(u(q_{F} + q_{B}) - p_{F}(q_{F}; K)q_{F} - x(K)q_{B} - c(d) - Z(G) \right) dt$$

$$Z' > 0$$
$$\dot{G} = q_F$$

Assume limit pricing always.

・ロト・4日・4日・4日・ 日 らくぐ

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	●00000

CLIMATE CHANGE WITHOUT EXTRACTION COSTS The importer solves

$$\max_{d} \int_{0}^{T} e^{-\rho t} \left(u(q_{F} + q_{B}) - p_{F}(q_{F}; K)q_{F} - x(K)q_{B} - c(d) - Z(G) \right) dt$$
$$+ \Pi^{\infty}(K(T)) - \frac{Z(G)}{\rho}$$
$$Z' > 0$$
$$\dot{G} = q_{F}$$
$$q_{F}(t) = 0, t > T$$
$$S(T) = 0$$

Assume limit pricing always.

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	00000

New EoM for λ_K :

$$\dot{\lambda}_K = \rho \lambda_K + p^{-1}(x)x'(K) + q_F Z'(G)$$

Economy must end on terminal path at exhaustion!

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	00000

New EoM for λ_K :

$$\dot{\lambda}_K = \rho \lambda_K + p^{-1}(x)x'(K) + q_F Z'(G)$$

Economy must end on terminal path at exhaustion!

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	00000

New EoM for λ_K :

$$\dot{\lambda}_K = \rho \lambda_K + p^{-1}(x)x'(K) + q_F Z'(G)$$

Economy must end on terminal path at exhaustion!

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	00000

Prop. With physical exhaustion, with immediate limit pricing, taking climate change into account implies R&D optimally slows down.

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	00000

The exporter's problem:

$$\max_{q_F} \int_0^\infty e^{-\rho t} \left(q_F p_F(q_F; K) - q_F C(S) \right) \, \mathrm{d}t$$

with C' < 0.

Extraction profitable as long as $x(K) \ge C(S)$.

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	00000

Importer solves same problem as before, s.t. x(K(T)) = C(S(T)).

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	00000

Importer solves same problem as before, s.t. x(K(T)) = C(S(T)).

$$\mathcal{H} = u(p^{-1}(x)) - x(K)p^{-1}(x) - c(d) + \lambda_K d - (\lambda_S - \lambda_G)q_F$$

< □ > < @ > < E > < E > E のQ@

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

$$c'(d) = \lambda_K$$

$$\dot{\lambda}_K = \rho \lambda_K + x'(K) \left(p^{-1}(x) + (\lambda_S - \lambda_G)(p^{-1})'(x) \right)$$

$$\dot{\lambda}_S = \rho \lambda_S$$

$$\dot{\lambda}_G = \rho \lambda_G + Z'(G)$$

$$\lambda_K(T) = \lambda_K^{\infty}(K(T)) - \mu x'(K)$$

$$\lambda_S(T) = \mu C'(S(T))$$

$$\lambda_G(T) = -\frac{Z'(G)}{\rho}$$

$$\mathcal{H}(T) = \rho \left(\pi^{\infty}(K(T)) - \frac{Z(G)}{\rho} \right)$$

- ロト - 4 目 ト - 4 目 ト - 4 目 - 9 9 9 9

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

< □ > < @ > < E > < E > E のQ@

PreliminariesModelSocial optimumNash EquilibriumPollution and extraction costs00000000000000000000000000

ECONOMIC EXHAUSTION

Prop. With economic exhaustion, R&D will eventually exceed the terminal path rate. Earlier, a phase may exist s.t. R&D is below terminal path rate. At exhaustion, R&D rate jumps to the terminal path rate.

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	000000000	

CONCLUSIONS

- Gradual development of substitutes may yield non-monotonic extraction
- Delaying R&D may be used as a credible device to drive down oil prices; high oil prices imply future supply is more plentiful, necessitating less R&D
- With physical exhaustion, climate change implies less R&D should be undertaken
- ► With economic exhaustion, climate change implies eventual crash R&D program to shut out polluting resource; initially, optimal R&D may be lower

Preliminaries	Model	Social optimum	Nash Equilibrium	Pollution and extraction costs
00000	000	00000	00000000	000000

Thank you! Comments very welcome.

niko.jaakkola@economics.ox.ac.uk

・ロト・4日・4日・4日・日・9000