Motivation	Model	Simulations	Conclusions

Green fiscal reforms, electricity generation and macroeconomic performance in the European Union. A model-based approach

Anna Bartocci Massimiliano Pisani

Banca d'Italia

Banca d'Italia

▲日▼▲□▼▲□▼▲□▼ □ ののの

Fifth Atlantic Workshop on Energy Economics Toxa, 25 June 2012 Usual disclaimers hold

Goal	Motivation	Model	Simulations	Conclusions
•				

Goal of the paper

- We assess a fiscal reform in Italy and rest of the European Union (REU) for
 - reducing CO_2 by private road transports (tax on fuel)
 - favoring renewable sources (RES) of electricity and households' consumption of electricity (subsidies)
- For the assessment, we develop a large-scale DGE model

	Motivation	Model	Simulations	Conclusions
	000			
Motiv	vation			

GHG emission target and road transport

- Road transport is the second largest CO₂ emitting sector
- Externalities of CO₂ emissions are estimated to be large
- Inadequate technological progress to achieve CO_2 target

• Taxes on fuel less regressive than those on electricity

Goal	Motivation	Model	Simulations	Conclusions
0		00000000	0000000	0
Motivati	on			

RES and electricity generation

- RES remain a minor source of energy (2008: 8.4% of total energy consumption in EU, 7.8% in Italy)
- According to European Commission (2011), by 2020:
 - Electricity should account for 45% of the RES increase
 - RES should be 37% of EU's electricity mix, 26% for Italy

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Goal	Motivation	Model	Simulations	Conclusions
	00●			
Motiv	ation			
What is	at stako			

- Satisfy environmental targets
- Economic implications of achieving environmental targets
 - structural change of energy sector (fossil vs renewables)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

• households' consumption and economic activity

Goal	Motivation	Model	Simulations	Conclusions
0	000	0000000	0000000	0

Model: main features

- Model akin to DICE and WITCH
- A large-scale two-region dynamic GE model
- One "region" is calibrated to Italy, the other to REU
- Main features are:
 - detailed electricity generation sector
 - fuel for private (households and firms) road transport

Goal	Motivation	Model	Simulations	Conclusions
0	000	0000000	0000000	0

Model: other features

- Representative forward-looking household in each region
- She consumes and supplies L and K to domestic firms
- Each region specialized in one manufacturing good
- Regions trade in goods, electricity and a bond
- Fossils imported from rest of the world at an exogenous (before-tax) price

Motivation	Model	Simulations	Conclusions
000	000000	0000000	

Model: the electricity generation sector

- Eight sectors in each region, one for each source: oil, coal, gas, nuclear, hydro, biomass, solar, wind
- Each source is combined with domestic capital and labor
- Low substitutability btw fossil fuels and RES
- Electricity sold to domestic and foreign households/firms

Low substitutability btw electricity and other goods

Motivation	Model	Simulations	Conclusions
	0000000		

Model: the electricity generation sector

$$EL_{ES,t} = \left[\rho_{ES}^{\frac{1}{\theta_{ES}}} V A_{ES,t}^{\frac{\theta_{ES}-1}{\theta_{ES}}} + (1-\rho_{ES})^{\frac{1}{\theta_{ES}}} ES_{t}^{\frac{\theta_{ES}-1}{\theta_{ES}}}\right]^{\frac{\sigma_{ES}}{\theta_{ES}-1}}$$

0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A ...

$$VA_{ES,t} = \left[\rho_{K_{VA_{ES}}}^{\frac{1}{\theta_{VA_{ES}}}} K_{VA_{ES,t}}^{\frac{\theta_{VA_{ES}}-1}{\theta_{VA_{ES}}}} + \left(1 - \rho_{K_{VA_{ES}}}\right)^{\frac{1}{\theta_{VA_{ES}}}} L_{VA_{ES,t}}^{\frac{\theta_{VA_{ES}}-1}{\theta_{VA_{ES}}}}\right]^{\frac{\theta_{VA_{ES}}-1}{\theta_{VA_{ES}}}}$$

Goal	Motivation	Model	Simulations	Conclusions
		0000000		

Model: the electricity generation sector

$$EL_{H,t}^{TOT} = \left[\rho_{EL_{CON}}^{\frac{1}{\theta_H}} EL_{CON,t}^{\frac{\theta_H-1}{\theta_H}} + \left(1 - \rho_{EL_{CON}}\right)^{\frac{1}{\theta_H}} EL_{RES,t}^{\frac{\theta_H-1}{\theta_H}}\right]^{\frac{\theta_H}{\theta_H-1}}$$

$$EL_t = \left[\rho_{EL_H}^{\frac{1}{\theta}} EL_{H,t}^{\frac{\theta-1}{\theta}} + (1 - \rho_{EL_H})^{\frac{1}{\theta}} EL_{F,t}^{\frac{\theta-1}{\theta}}\right]^{\frac{\theta}{\theta-1}}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Motivation	Model	Simulations	Conclusions
000	00000000	0000000	

Model: the transport sector

- Fuel for distributing manufacturing goods to retailers
- Fuel in the households' consumption (transport services)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

• Low substitutability btw fuel and other goods

 Goal
 Motivation
 Model
 Simulations
 Conclusions

 0
 000
 00000000
 0
 0

Model: the transport sector

From manufacturer to retailer

$$Q_{CM,t} = \left[\rho_{CH}^{\frac{1}{\theta_{CM}}} Q_{CH,t}^{\frac{\theta_{CM}-1}{\theta_{CM}}} + \left(1 - \rho_{CH}\right)^{\frac{1}{\theta_{CM}}} Q_{CF,t}^{\frac{\theta_{CM}-1}{\theta_{CM}}} \right]^{\frac{\theta_{CM}}{\theta_{CM}-1}}$$

$$Q_{CMFFU,t} = \begin{bmatrix} \frac{1}{\theta_{CMFFU}^{C}} Q_{CM,t}^{\frac{\theta_{CMFFU}-1}{\theta_{C}}} + \left(1 - \rho_{C_{CM}}\right)^{\frac{1}{\theta_{CMFFU}}} Q_{FFU,t}^{\frac{\theta_{CMFFU}-1}{\theta_{C}}} \end{bmatrix}^{\frac{\theta_{CMFFU}-1}{\theta_{CMFFU}-1}} \end{bmatrix}^{\frac{\theta_{CMFFU}-1}{\theta_{CMFFU}-1}} \frac{1}{\theta_{CMFFU}-1} \frac{1}{\theta_{CMFU}-1} \frac{1}{\theta_{CM}-1} \frac{1}{\theta_{CM}-1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 Goal
 Motivation
 Model
 Simulations
 Conclusions

 0
 000
 00000000
 0
 0

Model: the transport sector

Households' private transport services

$$Q_{CME,t} = \left[\rho_{CCMFFU}^{\frac{1}{\theta_{CME}}} q_{CMFFU,t}^{\frac{\theta_{CME-1}}{\theta_{CME}}} + (1 - \rho_{CCMFFU})^{\frac{1}{\theta_{CME}}} q_{CE,t}^{\frac{\theta_{CME-1}}{\theta_{CME}}} \right]^{\frac{\theta_{CME}}{\theta_{CME-1}}} \right]^{\frac{\theta_{CME}}{\theta_{CME-1}}}$$

$$Q_{C,t} = \left[\rho_{C_{CME}}^{\frac{1}{\theta_C}} q_{CME,t}^{\frac{\theta_C-1}{\theta_C}} + (1 - \rho_{CME})^{\frac{1}{\theta_C}} q_{CHFU,t}^{\frac{\theta_C-1}{\theta_C}} \right]^{\frac{\theta_C}{\theta_C-1}}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Goal IVIotivation IVIodel Simulations	Conclusions
o ooo ooo ooo ●oooooo	

Simulations

- Permanent and gradual increase (9 years) in fuel tax by 10% of the initial fuel price in EU
- Revenues are used as follows:
 - 80% to low taxes on consumption of electricity
 - 20% to finance electricity generation by RES (biomass, solar and wind). We keep hydro at the baseline level

Goal	Motivation	Model	Simulations	Conclusions
			0000000	

Simulations

- The initial steady state is calibrated over 2005-2007
- CO₂ emissions are computed relatively to 2005 level

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

 Goal
 Motivation
 Model
 Simulations
 Conclusions

 o
 ooo
 oooooooo
 oooooooo
 o

RES in electricity and CO_2 in road transports

23 21.	80
	09
103	3
2 -4.	89
3	5 103 32 -4.3

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Share of RES in 2007: IT 14.41%; EU 15.82%

RES Target: IT 17%; EU 20%

CO₂ Target: IT -10%, EU: -16%

Motivation	Model	Simulations	Conclusions
000	0000000	0000000	

Macroeconomic effects

	IT	REU
% Change in:		
GDP	0.02	0.11
Consumption	-0.20	-0.27
Investment	0.07	0.25
Consumption of electric.	7.44	9.97

(日) (四) (三) (三) æ

Motivation	Model	Simulations	Conclusions
		00000000	

RES in electricity and $\overline{CO_2}$ in road transports

	benchmark		no subsi	bsidies to RES	
	IT REU		IT	REU	
Share of RES (%)	16.23	21.89	14.41	15.82	
% Change in:					
Bio, Solar, Wind	65	103	5	6	
CO_2 emissions	-4.82	-4.89	-4.78	-4.83	

◆□> ◆□> ◆三> ◆三> ・三 のへで

	Motivation	Model	Simulations	Conclusions
0	000	0000000	00000000	0

Macroeconomic effects

	benchmark IT REU		no subsi	dies to RES
			IT	REU
% Change in:				
GDP	0.02	0.11	0.05	0.12
Consumption	-0.20	-0.27	-0.15	-0.21
Investment	0.07	0.25	0.14	0.25
Consumption of electric.	7.44	9.97	8.46	11.61

Goal	Motivation	Model	Simulations	Conclusions
			00000000	

RES in electricity and CO₂ in road transports

	benchmark		no sul	osidies
	IT REU		IT	REU
Share of RES (%)	16.23	21.89	14.41	15.82
% Change in:				
Bio, Solar, Wind	65	103	-0.25	-0.59
CO_2 emissions	-4.82	-4.89	-5.30	-5.35

	Motivation	Model	Simulations	Conclusions
0	000	0000000	0000000	0

Macroeconomic effects

	benchmark		no su	bsidies
	IT	REU	IT	REU
% Change in:				
GDP	0.02	0.11	-0.62	-0.54
Consumption	-0.20	-0.27	-0.69	-0.72
Investment	0.07	0.25	-1.11	-1.05
Consumption of electricity	7.44	9.97	-0.51	-0.55

Goal	Motivation	Model	Simulations	Conclusions
O	000	0000000	00000000	•
Conclu	sions			

- We have evaluated the impact of a green fiscal reform in Italy and REU by developing a DGE model
- We find that a mix of tax and subsidies could help to achieve EU targets

- The economic impact would be positive but small
- On going work on inserting ETS permits