On the Economics of Renewables

Toxa Workshop, 25 – 26 June 2012

Prof. Dr. Ottmar Edenhofer,

Brigitte Knopf, Michael Pahle, Eva Schmid, Falko Ueckerdt

Working Group III (WG III) - Mitigation of Climate Change

- 1. Has global warming stopped?
- 2. Scope of the challenge
- 3. The role of renewables in mitigation scenarios
- 4. System integration from a technical perspective
- 5. System integration from a cost perspective
- 6. System integration from a market perspective
- 7. How to cure market failures

1. HAS GLOBAL WARMING STOPPED?

Has global warming stopped?

- Looking at last 10 years, global warming seems to have slowed down or even stopped
- Has the IPCC made a major mistake?
- Is global warming real?

The influence of cutting the data!

- Multiple reasons for stable temperatures last decade:
 - "Slow down" last decades within natural variation
 - 1997/98 exceptionally warm due to El Nino
 - Cooling effect of increasing air pollution, particularly sulphur
 - Temperatures likely to increase once clean air policies are commissioned also in newly industrializing countries

 Looking at longer trends makes obvious that global warming has not stopped at all

Long term trends show clear evidence

- Temporal slow downs of global warming have occurred already in the past
- Recent independent examination of IPCC results (Berkeley Earth Surface Temperature Project) has confirmed results

2. THE SCOPE OF THE CHALLENGE

Climate Policy as an Insurance

GHG emissions resulting from the provision of energy services contribute significantly to the increase in atmospheric GHG concentrations.

We are not on Track – Renaissance of Coal!

SRREN (IPCC, 2011) 9

Renaissance of Coal?

The BAU Scenarios could exceed the Level of Greenhouse Gas Concentration of 600ppm (~4°C Temperature Increase)

SRREN (IPCC, 2011) 11

The Atmosphere as a Global Common

3. THE ROLE OF RENEWABLES FOR MITIGATION

The Current Global Energy System is dominated by Fossil Fuels

Shares of energy sources in total global primary energy supply in 2008.

The Technical Potential of Renewable Energies

Max (in EJ/yr)	1109	52	331	580	312	500	49837
Min (in EJ/yr)	118	50	7	85	10	50	1575

SRREN (IPCC, 2011) 15

Global RE Primary Energy Supply from 164 Long-Term Scenarios versus Fossil and Industrial CO₂ Emissions

SRREN SPM, Figure SPM.9

16

Global RE Primary Energy Supply from 164 Long-Term Scenarios versus Fossil and Industrial CO₂ Emissions

2050

17

Global RE Primary Energy Supply from 164 Long-Term Scenarios versus Fossil and Industrial CO₂ Emissions

18

The Importance of RES depends on the Availability of other Options

IPCC 2011

Without the availability of CCS, Renewables become more important

Macroeconomic Effect of Renewables

- without further deployment of Renewables costs increase for medium climate targets..
- ...and ambitious targets are not feasible any more

Scenario Classification Matrix

4. SYSTEM INTEGRATION FORM A TECHNICAL PERSPECTIVE

Time resolution: Time steps of several years

→ Fluctuations of renewables neglected **Geographical resolution:**

Aggregate world regions

→ Infrastructure neglected (e.g. grids)

Technological challenge with large shares of fluctuating renewables:

The electricity grid requires an exact match of supply and demand at **any time** and at **any place**.

Integration characteristics for a selection of RE electricity generation technologies

Technology		Plant size range	Variability: Characteristic time scales for power system operation	Dispatchability	Geographical diversity potential	Predictability	Capacity factor range	Capacity credit range	Active power, frequency control	Voltage, reactive power control
		(MW)	Time scale	See legend	See legend	See legend	%	%	See legend	See legend
Bioenergy		0.1–100	Seasons (depending on biomass availability)	+++	+	++	50 9 0	Similar to thermal and CHP	++	++
Direct solar energy	PV	0.004 100 modular	Minutes to years	+	++	+	12-27	<25-75	+	+
	CSP with thermal storage*	50-250	Hours to years	++	+**	++	35–42	90	#	++
Geothermal energy		2-100	Years	+++	N/A	++	60–90	Similar to thermal	++	++
Hydropower	Run of river	0.1- 1,500	Hours to years	++	+	++	20-95	0–90	++	++
	Reservoir	1-20,000	Days to years	+++	+	++	30–60	Similar to thermal	++	++
Ocean energy	Tidal range	0.1-300	Hours to days	+	+	++	22.5-28.5	<10	++	++
	Tidal current	1-200	Hours to days	+	+	++	19-60	10-20	+	++
	Wave	1-200	Minutes to years	+	++	+	22-31	16	+	+
Wind energy		5-300	Minutes to years	+	++	+	20–40 onshore, 30– 45 offshore	5-40	+	++

* Assuming CSP system with 6 hours of thermal storage in US Southwest.

** In areas with Direct Normal Irradiation (DNI) > 2,000 kWh/m2/yr (7,200 MJ/m2/yr)

IPCC 2011

Capacity credit is an indicator for the reliability of a generation type to be available during peak demand hours.

Technology			Capacity credit range		
			%		
Bioenergy			Similar to thermal and CHP		
Direct color operat	PV	[]	<25-75		
Direct solar energy	CSP with thermal storage*	[]	90		
Geothermal energy			Similar to thermal		
Hudronowor	Run of river	[]	0–90		
Trydropower	Reservoir	[]	Similar to thermal		
	Tidal range	[]	$<\!\!10$		
Ocean energy	Tidal current	[]	10-20		
	Wave	[]	16		
Wind energy			5-40		

If a type of generation has a low capacity credit,

the available output tends to be low during high demand periods.

IPCC 2011

Important Supply Side Options

Improved weather forecast

 \rightarrow better planning of renewable electricity feed-in

Demand side management

 \rightarrow adjust demand to renewable electricity feed-in

Flexible power plants → provide residual load

Grid extension

→ large area pooling of uncorrelated fluctuations (>300km): Import / Export between countries

Energy storage

→ remove electricity from the grid in times of high renewable generation and feed-in electricity in times of low generation

Impact of Considering Fluctuations in an Energy System Model of Germany

Scenario: 80% domestic CO₂ emission reduction in 2050 vs. 1990 (Ueckerdt et al., 2011) 27

- Improved weather forecast
 - \rightarrow better planning of renewable electricity feed-in

Demand side management

 \rightarrow adjust demand to renewable electricity feed-in

Flexible power plants

 \rightarrow provide residual load

Grid extension

→ large area pooling of uncorrelated fluctuations (>300km): Import / Export between countries

Energy storage

→ remove electricity from the grid in times of high renewable generation and feed-in electricity in times of low generation

Aggregated Transmission in 2050 in an Electricity Sector model of Europe

Baseline, no climate policy:

90% CO_2 reduction in electricity sector:

Deployment pathways are not linear

Germany 2050: Electricity production with network expansion (European Interconnectors)

Improved weather forecast

 \rightarrow better planning of renewable electricity feed-in

Demand side management

 \rightarrow adjust demand to renewable electricity feed-in

Flexible power plants

 \rightarrow provide residual load

Grid extension

→ large area pooling of uncorrelated fluctuations (>300km): Import / Export between countries

Energy storage

→ remove electricity from the grid in times of high renewable generation and feed-in electricity in times of low generation

Germany 2050: Electricity production without network expansion (Autarkic Germany)

Large back-up capacities of flexible gas power plants are required to provide residual load in extended times of low renewable electricity generation (European winter)...

...even with a European integrated electricity grid

...even with large day/night or medium-term storage capacities (e.g. pumped hydro)

What are the implications for the costs of renewables?

5. SYSTEM INTEGRATION FROM A COST PERSPECTIVE

The Costs of Renewables are often still higher than those of Non-Renewables but...

...some RE Technologies are already competitive

Learning-by-Doing

What are the total costs of variable renewables (VRE)?

Additional system costs can be crucial.

LCOE indicator needs to be extended.

"System LCOE" cover the arguments of Joskow and Hirth from a cost perspective

	Private perspective	System perspective		
Cost	Standard LCOE	System LCOE		
Value/ Benefit	VRE investor's profits depend on price distribution (Joskow's 2011)	Market value of VRE decreases with increasing shares (Hirth 2012)		

 $p\downarrow 2 (A) G\downarrow A / VRE$

- huge challenge with high shares: VRE LCOE increase due to curtailment
- fossil system LCOE increase with VRE
- these additional system costs are small (~10%) when added to VRE generation LCOE

- huge challenge with high shares: VRE LCOE increase due to curtailment
- fossil system LCOE increase with VRE
- these additional system costs are small (~10%) when added to VRE generation LCOE
- with variability: medium increase of VRE LCOE (for shares <50%, in Germany)

- huge challenge with high shares: VRE LCOE increase due to curtailment
- fossil system LCOE increase with VRE
- these additional system costs are small (~10%) when added to VRE generation LCOE
- with variability: medium increase of VRE LCOE (for shares <50%, in Germany)
- total system LCOE increase with high shares of VRE

- huge challenge with high shares: VRE LCOE increase due to curtailment
- fossil system LCOE increase with VRE
- these additional system costs are small (~10%) when added to VRE generation LCOE
- with variability: medium increase of VRE LCOE (for shares <50%, in Germany)
- total system LCOE increase with high shares of VRE

- system implication fully considered
- social cost perspective \rightarrow indicator for policy maker
- method not very simple \rightarrow improve framework

Impact of Considering Fluctuations in an Energy System Model of Germany

Scenario: 80% domestic CO₂ emission reduction in 2050 vs. 1990 (Ueckerdt et al., 2011) 49

6. SYSTEM INTEGRATION FROM A MARKET PERSPECTIVE

The Current Market System: Merit Order Pricing

Capacity (performance)

Wholesale Market Prices

Merit-Order effect of increasing shares of renewables: **Decreasing power prices**

(Knopf et al. , 2011) 52

Wholesale Market Prices

Knopf, Pahle, Edenhofer (2012)

- Uncertainty due to further development of exogenous drivers, e.g. gas price
- Uncertainty due to market design for renewables

System Integration

- Demand: Fluctuating, Supply: Conventional only
- Price set by marginal plant, mostly natural gas
- Avg. price close to marginal cost of natural gas plants
- High price span due to supply curve curvature

The Energy Tranformation in Germany: Increasing Share of Renewable Energy in Electricity Generation

System Integration

- **RES** entering the market at zero marginal costs
- → Peaking plants and less efficient natural gas no longer needed: Plants decommissioned
- → Low average price reduces invest. incentive for plants
- → Low price span reduces invest. incentive for storage

System Integration

- But: **Fluctuations** matter if share of RES is high!
- → "Left shift" of convent. supply if RES supply is low
- → Insufficient supply if demand is high at the same time
- → Reliability/security of supply endangered

Negative Spot Prices: Indicator for a Market Failure

- Challenge long-term scale: Delivering adequate capacity
- → Possible solution: Capacity mechanism
- Challenge short-term scale: Delivering flexibility

7. MARKET FAILURES – AND HOW TO CURE THEM

Externalities & Implied Policies along Innovation Chain

Technology Push Policy

Market Pull Policy

- Externalities: Empirical evidence and relevance?
- Implications for RES support scheme design (FIT, CfD, TGC, Auction)?

Case 1: Carbon Pricing is necessary and sufficient

Edenhofer et al. 2007

Case 2: Additional Promotion of Renewables is not reasonable

Several stable equilibrium points (PE3 and PE1) are possible if the supply curves show a nonconvex behavior (PE₂ is not stable).

► Without additional policy support, the system will steer towards the neighboring equilibrium point PE₃.

► $PE_3 > PE_1$: the system is efficient.

Edenhofer et al. (2007)

Case 3: Additional Promotion of renewables is reasonable

► The internalization of the social costs of energy supply (e.g. via a cap and trade system) improves the competitiveness of renewable energies

As long as the cross-over point PE_3 does not vanish, this, however, still results in an inefficient state.

FROM MARKET FAILURES TO POLICY INSTRUMENTS

Robustness of Policy Instruments

Consumption losses relative to the 1st-best optimum of optimal and "close-to-beoptimal" instruments that deviate by +1% and -1% from the optimal value.

2nd Best-Technology Policy

Kalkuhl, Edenhofer & Lessmann 2011

http://srren.ipcc-wg3.de/report

