Conditions for profit-neutral permit allocations

Jean-Philippe Nicolai¹

¹ETH Zurich, Chair of Integrative Risk Management and Economics

ETH Zurich

イロト イロト イヨト イヨト

The Kyoto Protocol Commitment to reduce all CO2 emissions (8% with regard to 1990). Countries are free to choose their instrument (price or quantity).

Implementing the Kyoto Protocol in the EU: the EU ETS A cap-and-trade system, that concerns energy-intensive industrial sectors (cement, steel, electricity...) \Rightarrow 50% of total European CO2 emissions. This market for emission permits first opened in 2005.

A peculiar issue for cap-and-trade: how to distribute permits? Permits may be whether given for free to firms or directly sold to firms or auctioned. A reserve for entrants may be forseen.

イロト イポト イヨト イヨト 二日

First periods(2005-2012):

- More than 95% of permits were given for free.
- Many sectors were not negatively affected by this regulation and the profits increased. (for instance, electricity)Verbruggen, '08; Sijm *et al.*, '06;
- Too many allowances were distributed. (Reilly and Paltsev 2005).

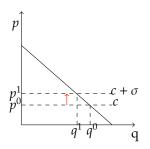
Free allowances and other experiments

- ACES: 80% free
- Australia: 20% free
- EU-ETS post 2013: permits for electricians should be auctioned.

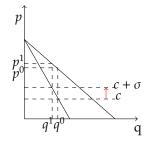
Profits neutrality criterion

Let σ and ε^N be the price of permits and neutral-profits allowances.

 π_i (After regulation) + $\varepsilon^N \sigma = \pi_i$ (Before regulation)


Consumers and State bear the cost of the environmental policy. The neutral profits allocations: two main issues in literature

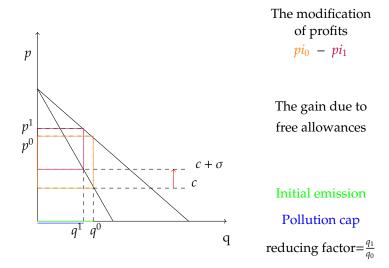
- Which percentage of permits should be granted for free to compensate firms' losses?
 - Bovenberg & Goulder (2001), Quirion (2003), Smale (2006): in Europe no more than 50% are enough to get profit neutrality.
 - Goulder (2010): giving 20% is enough to neutralize the profits of all US industries.
- Which is the efficiency cost of avoiding profit losses in various US industries when a CO2 abatement policy is implemented? Goulder (2002, 2005, 2007) use the double dividend theory.


イロト イボト イヨト イヨト 一日

Intuitions

Perfect competition

 $\pi(\sigma) = \pi(\sigma = 0) = 0$ No free allowances should be given


 $\frac{\partial \pi}{\partial \sigma} < 0$ Free allowances are recquired

イロト イポト イヨト イヨト

Hepburn, Quah, Ritz (2013):

- Regardless to the market structure, it is always possible to neutralize profits by giving free allowances on the basis of the initial emissions.
- They consider an exogenous permits price.
- They analyze the conditions under which the grand-fathering rate is lower than one. (However, it may correspond to free allowances higher than permits)

Intuitions

イロト イロト イヨト イヨト

Firms and consumers

N symmetrical firms competing "à la Cournot". Production technology is polluting. One unit of production generates one unit of pollution. No abatement technology.

Firms face an iso-elastic demand function given by:

$$P(Q) = \alpha Q^{-\frac{1}{\beta}} \quad with \quad Q = \sum_{i=1}^{n} q_i, \tag{1}$$

 β is the elasticity of demand which is constant ($\beta > \frac{1}{n}$) and α is the size of demand.

The goal of the regulator is to reduce emmissions from a factor z, such that

$$Q(\sigma) = zQ^{\varnothing},\tag{2}$$

<ロ> (四) (四) (三) (三) (三)

where $Q(\sigma)$ is the total production when the price of permits is equal to σ . The total quantity produced when the price of permits is equal to zero Q^{\emptyset} is the initial production.

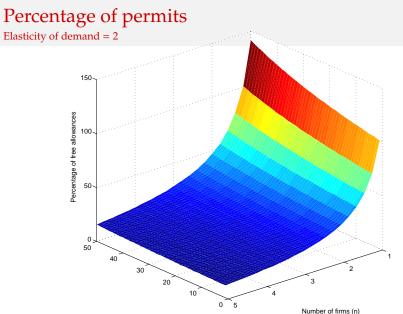
Model

On the market for permits

The perfectly competitive permits market clears when supply equals demand, or:

$$Q(\sigma) - \sum_{i=1}^{n} \varepsilon_i = zQ(\sigma = 0) - \sum_{i=1}^{n} \varepsilon_i \Leftrightarrow Q(\sigma) = zQ(\sigma = 0).$$

The resulting equilibrium price for permits is then:


$$\sigma = (z^{-\frac{1}{\beta}} - 1)c$$

The profit and the profit factor $(z_{\pi} = \frac{\pi(\sigma)}{\pi(\sigma=0)})$ are equal to:

$$\pi_i(z) = \left(\frac{1}{n}\right)^{\beta+1} \left(\frac{\alpha}{\beta}\right)^{\beta} (n\beta - 1)^{\beta-1} \left(z^{-\frac{1}{\beta}}c\right)^{1-\beta},$$
$$z_{\pi} = z^{1-\frac{1}{\beta}}.$$

The implementation of a market for permits is caracterized by:

- (i) The profit increases when the elasticity of demand is weak (< 1), and it decreases otherwise.
- (ii) When the elasticity of demand is high (> 1), the profit 's losses for a firm decreases with the number of firms.
- (iii) When the elasticity of demand is high (> 1), the sum of profits' losses decreases with the number of firms.

Model

Percentage of emissions reduction

э

・ロト ・四ト ・ヨト ・ヨト

Proposition

Let $\overline{z}(\beta, n)$ be the reducing factor that the regulator can reach giving all permits for free and neutralizing profits. For each (z, β, n) , if $z < \overline{z}(\beta, n)$, the offsetting is not possible. The threshold is such that:

Model

(i)
$$\frac{\partial \overline{z}}{\partial \beta} > 0$$
 and $\frac{\partial \overline{z}}{\partial n} < 0$.
(ii) When $n=1, \overline{z}(\beta, 1) > 1$.

(iii) When
$$n=2, 0.2 > \overline{z}(\beta, 2) > 0.1$$
.

(iv) When n > 2, $\bar{z}(\beta, n) < 0.1$.

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Multi-sector regulation

- Two sectors A and B.
- A sector j is characterized by the elasticity β_j, size of demand α_j, marginal cost c_j, number of firms n_j and polluting factor f_j.
- The goal of the regulator is $Q_A(\sigma) + Q_B(\sigma) = z \left(Q_A^{\emptyset} + Q_B^{\emptyset} \right).$

Implementing a multi-sector market for permits with a reducing factor for the whole economy is equivalent to implement independent markets for permits with individual reducing factors.

$$z_B = ((z_A^{-\frac{1}{\beta_A}} - 1)\frac{c_A f_B}{c_B f_A} + 1)^{-\beta_B}$$

Proposition

When $\beta_A = \beta_B$, $c_A = c_B$ and $f_A = f_B$,

$$\frac{\partial z_A}{\partial \beta_A} < 0, \quad \frac{\partial z_A}{\partial c_A} > 0, \quad \frac{\partial z_A}{\partial f_A} < 0.$$

Parameters

	Electricity	Steel	Cement
market size (α)	3600	200	250
price (p)	47	313	64
unit cost (c)	37	247	46.8
emission rate (f)	0,37	0,88	0,8
ratio (c/f)	100	280	58.5
elasticity (β)	1	2	2
market structure	5	3	2
$n = \frac{1}{\beta(1 - c/p)}$			

Table : Data of the parameters and calibration of the model.

æ

・ロト ・ 御 ト ・ 言 ト ・ 言 ト

Results

Implementation of the market for permits	
Reduction of total emissions	
reduction of total emissions	-5%
Effect on quantities	
Electricity	
Steel	-2%
Cement	-10%
Effect on price (equal to effect on costs)	
Electricity	+3%
Steel	+1%
Cement	
Effect on profits	
Electricity	0%
Steel	
Cement	

Table : Illustration of the effect of the implementation of pollution permits on profits.

æ

・ロト ・ 御 ト ・ 言 ト ・ 言 ト

Results

Sector-based policy which neutralizes all profits	
Neutral-profits allowances/ initial emissions (%)	
Electricity	0%
Steel	19 %
Cement	31%
Percentage of total allowances given for free	10.38%
Uniform policy which neutralizes all profits	
Grand-fathering rate applied Effect on profits	0.318
Electricity	+3.8%
Steel	+0.6%
Cement	0%
Percentage of total allowances given for free	33.47%

Table : Illustration of neutral-profits allowances.

æ

・ロン ・四 と ・ ヨ と ・

Upper bound?

Do we have to believe in these results? In other words, the percentage of permits found is it an upper bound?

- On the short run? No
- On the middle term? Yes
- With end-of-pipe abatement technology? Yes
- With cleaner production? Yes
- With process-integrated abatement technology? ???

イロト 人間 とくほ とくほ とう