Andreas Gerster

ckground

Data

Mode

Results

Discussion

Fundamental Drivers of Regime-switching: An Analysis of German Power Prices

Andreas Gerster

RGS Econ & RWI

6th Atlantic Workshop - June 26, 2014

Mode

. .

Discussio

Background

- German electricity supply is undergoing rapid change:
 - 1 share of electricity from renewables increases steadily
 - 2 accelerated nuclear phase-out after the Fukushima accident
- Since negative bids have been allowed at the day-ahead market of the EPEX, substantial price drops are prevalent
 - the most extreme case: -500 EUR/MWh

Related work

Regime-switching models for positive price spikes:

- Mount et al (2006): fundamental data (reserve margin) can be successfully used to model positive price spikes
- Huisman (2008): temperature data can be used as a proxy

Descriptive analyses of negative price events:

 Nicolosi (2010): residual load is a key driver of negative prices Data

Discussio

- hourly day-ahead prices during the off-peak period (8 p.m. and 8 a.m.)
- time period: 1st of March, 2009, until 1st of March, 2013
- fundamental data:
 - 1 fuel prices
 - 2 electricity infeed from renewables
 - Ioad
 - 4 nuclear unavailabilities

Andreas Gerster

kground

Data

Mode

Results

Discussion

Day-ahead prices

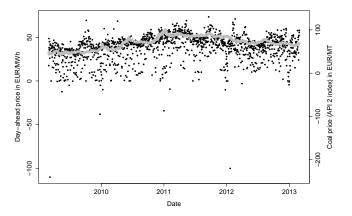


Figure: Day-ahead prices in trading hour 7 (black points) and coal prices (grey line). Prices smaller than -110 EUR/MWh not displayed.

Andreas Gerster

kground

Data

Mode

Result

Discussio

Wind power and nuclear availabilities

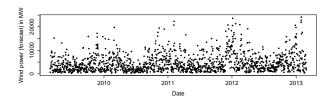


Figure: Available nuclear capacities between 30/10/2009 and 28/02/2013 and day-ahead forecasts of wind power during trading hour 7 between 01/03/2009 and 28/02/2013.

Data

Mode

Result

Discussion

Day-ahead prices and residual load

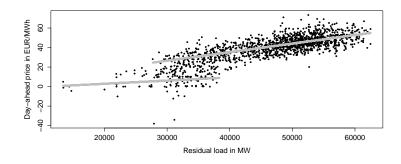


Figure: Residual load and day-ahead prices in trading hour 7. Prices smaller than -40 EUR/MMh not displayed.

Markov regime-switching model

Base regime: AR(1) with time-varying mean

•
$$(p_t^b - \mu_t) = \phi(p_{t-1}^b - \mu_{t-1}) + \epsilon_t$$

•
$$\mu_t = \alpha + \beta resload_t + \gamma coal_t$$

Low-price regime: shifted log-normal

•
$$(p_t^I - \mu_t) = \delta - LN_t$$

Time-varying switching probabilities: logistic function

•
$$P^{bb}(resload_t, mora_t) = \frac{exp(a^b + b^b resload_t + c^b mora_t)}{1 + exp(a^b + b^b resload_t + c^b mora_t)}$$

Mode

Results

Discussio

Results

- switching probabilities decrease in residual load and are smaller after the Nuclear Moratorium
- a separate second regime is found for all off-peak trading hours except for the trading hours 21-23 and 8

		hour 7
Parameters	â ^b	-16.20***
of the		(1.94)
switching	â ^l	21.32***
probabilities		(4.16)
	\hat{b}^b	4.45***
		(0.52)
	ĥΙ	-5.37***
		(1.05)
	\hat{c}^b	2.79***
		(0.43)
	ĉ ^I	-3.64***
		(1.15)
Log-likelihood		-4643.81

Table: Estimation results. Asymptotic standard errors in parantheses. *, **,*** denote stat. significance at the 10 %, 5 %, 1 % level.

Andreas Gerster

ackground

Model

Results

Discussion

Visualization of results

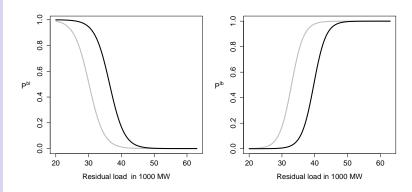


Figure: Switching probabilities for hour 7. P^{bl} represents the probability to switch from the base regime to the low-price regime. Switching probabilities after the nuclear moratorium are represented by the grey line.

Andreas Gerster

Background

Mode

Results

Discussion

Shift of switching probabilities after the Moratorium

		hour 2		
P^{bl} : Δ resload	-4,239	-5,303	-5,245	-5,590
	hour 5	hour 6	hour 7	hour 24
P^{bl} : Δ resload	-5,819	-6,532	-6,151	-3,958

Table: Shift of the switching probabilities, in MW. P^{bl} represents the probability to switch from the base to the low-price regime.

Andreas Gerster

Background

Background

Model

Results

Discussi

Investigation of the regimes

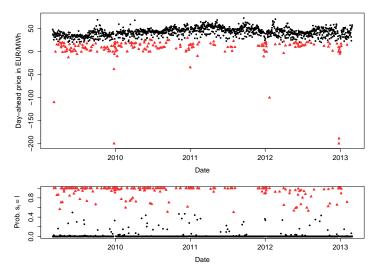


Figure: Day-ahead prices in trading hour 7 and (smoothed) probabilities that observations belong to the low-price regime $P(s_t = I)$.

Ducingroun

Mode

Discussion

Conclusion and discussion

- for the majority of off-peak trading hours the model distinguishes a low-price regime
- low-price regime includes positive prices (fuel switch between hard coal and lignite?)
- results indicate that higher RES-E levels increases low-price event probabilities
- results indicate that Nuclear Moratorium reduced low-price event probabilities

Andreas Gerster

Background

Data

Mode

Discussion

Thank you for your attention!