

Empower the consumer! Energy-related financial literacy and its socio-economic determinants

Nina Boogen, ETH Zürich joint work with Julia Blasch, Claudio Daminato and Massimo Filippini

8th Atlantic Workshop on EEE in A Toxa, 21. June 2018

Motivation

ENERGY EFFICIENCY GAP:

Individual decision-makers do not choose the most energy-efficient technology

EVEN if this technology is also the most cost-efficient choice (minimizing lifetime costs)

Source: Carbon Trust

Motivation

Possible explanations for the energy efficiency gap:

- Market failures
 - Negative externalities
 - Lack of information
 - Asymmetric information
 - **–** ...
- Behavioural failures
 - Bounded rationality
 - Status-quo bias
 - Bounded willpower (self-control)
 - **–** ...

Motivation

- Energy-related decisions: Benefits and costs over a long period of time ⇒ imply an inter-temporal optimisation
- Individuals need to
 - collect information,
 - make assumption regarding price and usage over the lifetime,
 - perform an investment analysis or calculate the lifetime cost
- Different decision-making strategies:
 - Rational consumer: make decisions using information and cognitive skills to calculate the lifetime cost
 - Bounded-rational consumer: make decisions using limited information and with cognitive constraints (uses heuristics)
- Factors such as age, income, gender, education, attitudes, ... but also financial literacy and energy-related knowledge play a role for what decision-making strategy an individual uses.

Literacy

- Basic definition of literacy: abilities to read and write text
- UNICEF: ability to use reading, writing and numeracy skills for effective functioning and development of the individual and the community
- In the last decades the word "literacy" has been used in a much broader way, metaphorical way: information literacy, media literacy, scientific literacy, financial literacy, environmental literacy...

Financial Literacy

- (Lusardi and Mitchell, 2008): "Knowledge of basic financial concepts, such as the working of interest compounding, the difference between nominal and real values, and the basics of risk diversification."
- Financial literacy is usually measured using three questions:
 - Compound interest
 - Inflation
 - Risk diversification
- Gender gap in financial literacy (Fonseca et al., 2012; Lusardi and Mitchell, 2014; Almenberg and Dreber, 2015)

Energy Literacy

- DeWaters and Powers (2011, 2013): established stream of literature uses a definition of "energy literacy" that focuses on an individual's energy-related knowledge, attitudes and behaviour.
- Brounen et al. (2013); Kalmi et al. (2017): recent empirical literature measures "energy literacy" as an individual's ability to calculate and compare lifetime costs of energy consuming durables.
- Blasch et al. (2017a,b,c): consider two separate literacy indicators, one for energy-related knowledge and another for investment literacy.

Energy-related financial literacy

- We combine and extend these above measures to the measure of energy-related financial literacy.
- We define energy-related financial literacy as the combination of
 - (1) energy-related knowledge and
 - (2) cognitive abilities that are needed in order to take decisions with respect to the investment for the production of energy services and their consumption.

Energy-related financial literacy

We elicit the respondents level of energy-related financial literacy using eight questions:

- Energy-related knowledge (4 questions)
 - knowledge of the average electricity price
 - operating costs of appliances
 - savings potential of LED technology
- Financial literacy (3 questions, Lusardi and Mitchell (2014))
 - compound interest
 - inflation
 - risk diversification
- Energy-related investment (1 question)
 - lifetime cost calculation

Lifetime cost calculation

Suppose you own your home, your fridge breaks down and you need to replace it. As a replacement, you can choose between two alternatives that are identical in terms of design, capacity and quality of the cooling system. Fridge A sells for 400 CH and consumes electricity for the amount of 300 kWh per year. Fridge B has a retail price of 500 CHF and consumes electricity for the amount of 280 kWh per year.

Assume the average cost of energy is **0.20 CHF per kWh**, the two models have both a **lifespan of 15 years** and that you would get a return of 0 percent from any alternative investment of your money. Which choice of purchase minimizes the total costs of the fridge over its lifespan?

- Fridge A
- Fridge B
- Fridge A and B are equivalent in terms of total costs
- Don't know

Contributions

- Summarize and clarify the various concepts and definitions of "energy literacy".
- Propose new concept of "energy-related financial literacy" that captures the bounded rationality of individuals associated with energy- related decision-making in a more comprehensive way.
- Identify the most relevant socio-economic characteristics that can explain the differences in the level of "energy-related financial literacy" among a large sample of European households using an econometric analysis.
- Analyse the role of gender in the context of energy-related investment decisions.

Data

- Large-scale household survey collected within the EU H2020 Project "PENNY" in Italy, the Netherlands and Switzerland
- Survey organization:
 - In collaboration with national utility companies.
 - Online survey in 2017
 - Invitation via postal letters (Switzerland) or via e-mail (Netherlands and Italy)
- Survey information on:
 - Household composition and socio-economic attributes
 - Dwelling characteristics
 - Energy services and appliance stock
 - Energy-related financial literacy (N=2,823)

Descriptive statistics

Estimation method

- Literacy indicators can be considered ordinal outcome variables.
- Latent variable can be described as a linear function of several explanatory variables: $y_i^* = X_i \beta + \varepsilon_i$
- Where X_i is a vector of socio-economic characteristics of household i such as:
 - age and age²
 - income groups
 - educational attainment
 - owned dwelling

- country of residence
- employment status and
- gender (and interactions of gender with e.g. country)
- We use ordered probit to estimate:
 - 1. energy-related financial literacy index (0 to 8)
 - 2. financial literacy index (0 to 3)
 - indicator for whether respondents could carry out the lifetime cost calculation correctly

Results - Average marginal effects

	energy-related financial index					
	5			6		
Owned dwelling	0.0054	***	0.0204	***		
Female	-0.0170	***	-0.0635	***		
IT	-0.0173	***	-0.0647	***		
Not working*female	0.0037	*	0.0138	*		
Partner has university degree	0.0027	**	0.0102	**		
Partner is not working	0.0022	*	0.0081	*		

Note: * p<0.10, ** p<0.05, *** p<0.01.

For dummy variables the effects are obtained from probability differences.

Results - Average marginal effects

	energy-related financial index					
	7		8			
Owned dwelling	0.0277	***	0.0284	***		
Female	-0.0862	***	-0.0884	***		
IT	-0.0879	***	-0.0901	***		
Not working*female	0.0187	*	0.0192	*		
Partner has university degree	0.0139	**	0.0142	**		
Partner is not working	0.0111	*	0.0113	*		

Note: * p<0.10, ** p<0.05, *** p<0.01.

For dummy variables the effects are obtained from probability differences.

Conclusions

- New concept of "energy-related financial literacy" is more appropriate, as it considers two important elements (knowledge and skills).
- The majority of the respondents in our sample perform well in the standard financial literacy questions.
- However, substantial lack of knowledge in the field of energy-related knowledge and in the ability to compute the lifetime cost of appliances.
- In the econometric analysis we find a significant gender gap for our measure of energy-related financial literacy.
 - ⇒ Confirms previous findings (gender gap in financial literacy)
- Specifically educate women in energy-related investment decisions???

QUESTIONS?

Thank you for your attention...

nboogen@ethz.ch @NinaBoogen

Blasch, J., Boogen, N., Daminato, C. and Filippini M. (2018). Empower the consumer! Energy-related financial literacy and its socio-economic determinants, Economics Working Paper Series, 18 (289), Zürich: CER-ETH.

This project has received funding from the European Union's Horizon 2020 research and innovation programme and was also supported by the Swiss State Secretariat for Education, Research and Innovation (SERI).

Bibliography

- Almenberg, J. and Dreber, A. (2015). Gender, stock market participation and financial literacy. Economics Letters, 137:140–142.
- Blasch, J., Boogen, N., Filippini, M., and Kumar, N. (2017a). Explaining electricity demand and the role of energy and investment literacy on end-use efficiency of Swiss households. *Energy Economics*, 68(Supplement 1):89–102.
- Blasch, J., Filippini, M., and Kumar, N. (2017b). Boundedly rational consumers, energy and investment literacy, and the display of information on household appliances. *Resource and Energy Economics, In Press.*
- Blasch, J., Filippini, M., Kumar, N., and Martinez-Cruz, A. L. (2017c). Narrowing the energy efficiency gap: The impact of educational programs, online support tools and energy-related investment literacy. Economics Working Paper Series No. 17/276, Center of Economic Research (CER-ETH).
- Brounen, D., Kok, N., and Quigley, J. M. (2013). Energy literacy, awareness, and conservation behavior of residential households. *Energy Economics*. 38:42–50.
- DeWaters, J. and Powers, S. (2013). Establishing measurement criteria for an energy literacy questionnaire. The Journal of Environmental Education, 44(1):38–55.
- DeWaters, J. E. and Powers, S. E. (2011). Energy literacy of secondary students in new york state (usa): A measure of knowledge, affect, and behavior. *Energy policy*, 39(3):1699–1710.
- Fonseca, R., Mullen, K. J., Zamarro, G., and Zissimopoulos, J. (2012). What explains the gender gap in financial literacy? The role of household decision making. *Journal of Consumer Affairs*, 46(1):90–106.
- Kalmi, P., Kazukauskas, A., and Trotta, G. (2017). The role of energy literacy as a component of financial literacy: survey-based evidence from Finland. In 15th IAEE European Conference, Sept 3-6, 2017. International Association for Energy Economics.
- Lusardi, A. and Mitchell, O. S. (2008). Planning and financial literacy: How do women fare? *American Economic Review*, 98(2):413–17.
- Lusardi, A. and Mitchell, O. S. (2014). The economic importance of financial literacy: Theory and evidence. Journal of economic literature, 52(1):5–44.