Watt Watchers & The Seesaw of Energy Dieting Evidence from Low-Income Urban Households

Sébastien Houde joint work with Catherine Wolfram and Mary Zaki

ETH Zürich, E2e Project

June 21 2018

Motivation

 Energy poverty is a big problem in many "developed" economies, but we know very little about the consequences and how to address it.

Motivation

 Energy poverty is a big problem in many "developed" economies, but we know very little about the consequences and how to address it.

In the US:

- The federal Low Income Home Energy Assistance Program (LIHEAP):
 - Provides assistance to 9 Million of households (FY 2011); and
 - \$3-5 Billion in annual funding (EEI, 2015).
 - States and local governments have their own programs, together with non-profits and utility companies.

A Research Agenda

- Why low-income households cannot afford energy bills?
 - Prices are too high
 - Information frictions
 - Behavioral issues
- Which policies (or combination of) should be used to provide bill assistance?
 - Subsidized tariffs
 - Grants and arrears forgiveness
 - Education
 - Different billing approaches, e.g., pre-paid billing

A Research Agenda

- Why low-income households cannot afford energy bills?
 - Prices are too high
 - Information frictions (we find evidence)
 - Behavioral issues (we find evidence)
- Which policies (or combination of) should be used to provide bill assistance?
 - Subsidized tariffs
 - · Grants and arrears forgiveness
 - Education (today's focus)
 - Different billing approaches, e.g., pre-paid meters

Research Questions

Main question:

 Can energy education alone leads to energy savings and make energy bills more affordable?

Secondary questions:

- Does the teaching format matter: in-person versus online?
- How to encourage households to attend an energy class?
- How does energy behavior change as a response to a class?

Study Design

- We implemented a randomized encouragement design (RED) to evaluate the impact of energy education and different teaching formats.
- A low-cost intervention with minimal change to the bill assistance process.
 - Maximized external validity
 - Kept researchers happy

Our Study Context

- Partners:
 - Fuel Fund (FF) of Maryland, a non-profit organization that provides energy bill assistance in the Baltimore City metropolitan region
 - Baltimore Gas and Electric (BGE)
- FF offers bill assistance grants and the Watt Watchers program: an energy education class.
- The Watt Watchers program was (before the study) a "formal" class of 2 sessions of 90 minutes.
- The class was not mandatory prior our study and heavily undersubscribed (<10%).

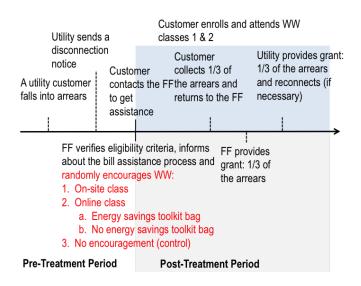
Our Target Population Lacks Affordability

	Ratio Monthly Bill			
Percentiles	•			
5%	.056			
10%	.072			
25%	.113			
50%	.182			
75%	.346			
90%	.560			
95%	.726			
Mean: .322				

Statistics for a subsample (N=164) of households.

Our Target Population is Not Only Energy Poor ...but also Energy Deprived

30% of our target population get disconnected prior assistance.


Disconnection lasts for 6.5 months on average!

Why RED?

- We could not perfectly enforce the assignment to the class and not "politically" acceptable to restrict people to enroll in the class.
- Attending the class has a high opportunity cost for this population: e.g., multiple jobs, working on shifts (night and week-end), single parents, mobility issues.

These barriers to attend the on-site class motivated the online class: 45 minutes version of the on-site class that can be taken on a computer or other devices.

Research Design

Research Design: Encouragement

Households with a disconnection notice:

- Contact the FF for assistance
- Are informed of the eligibility criteria, process, and were opted-in (randomly) in a class (on-site or online)
- Received a confirmation letter with time/location of the class or link to the online class (plain letter for control)
- In the letter, subset of clients were informed that they were enrolled in a lottery (cash or in-kind) if they graduated from the class

Results

Compliance: Graduated From the Class

	% Compliance Rate				
	w.r.t. Control: ~4%				
On-site	31.4***				
Online	35.3***				

	% Compliance Rate	
	w.r.t. Control: \sim 4%	
Cash×On-site	27.7***	
$Cash{ imes}On ext{-line}$	38.3***	
In-kind $ imes$ On-site	31.9***	
In -kind $\times Online$	29.3***	
No Incentive×On-site	33.0***	
No Incentive×Online	36.5***	

Compliance: Graduated From the Class

First take-away: modest effect of the online class on graduation although much lower opportunity cost.

Intent-To-Treat (ITT):

$$log(Energy)_{it} = \gamma Post_{it} + \beta^{Onsite} Post_{it} \times Onsite_{i}$$

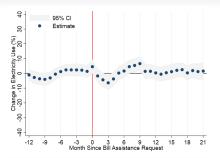
$$+ \beta^{Online} Post_{it} \times Online_{i} + \alpha_{i} + \eta_{t} + \epsilon_{it}$$

Local Average Treatment Effect (LATE):

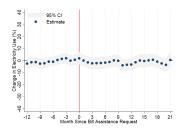
$$log(Energy)_{it} = \gamma Post_{it} + \beta^{Onsite} Grad\hat{O}nsite_{it}$$
$$+ \beta^{Online} Grad\hat{O}nline_{it} + \alpha_i + \eta_t + \epsilon_{it}$$

ITT & LATE

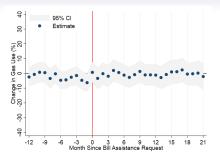
	ITT		LATE	
Dep. Var.	log(kWh)	log(therms)	log(kWh)	log(therms)
Post	-0.0937***	-0.0604**	-0.0941***	-0.0584**
$Post \times On\text{-site}$	0.00304	0.0101	0.00862	0.0283
$Post \times Online$	-0.0138	0.00372	-0.0348	0.00933


Second take-away: the on-site and online classes have no persistent effect over a period of ~ 21 months.

Second take-away: the on-site and online classes have no persistent effect over a period of ~ 21 months.


Third take-away: we find a persistent "disconnection notice-effect" for both electricity and natural gas.

Energy Consumption: Dynamic ITT


ITT On-site: Electricity

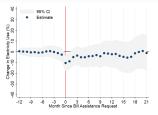
ITT Online: Electricity

ITT On-site: Gas

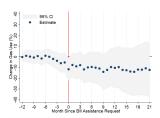
ITT Online: Gas

Fourth take-away: the on-site class mimics the seesaw effect of dieting: temporary belt-tightening large reductions followed by "over-comsumption".

Fourth take-away: the on-site class mimics the seesaw effect of dieting: temporary belt-tightening large reductions followed by "over-comsumption".


Fifth take-away: no noticeable effect for the online class (some specifications show a dip in month 10).

Fourth take-away: the on-site class mimics the seesaw effect of dieting: temporary belt-tightening large reductions followed by "over-comsumption".


Fifth take-away: no noticeable effect for the online class (some specifications show a dip in month 10).

Sixth take-away: no noticeable effect for natural gas, imprecise (less statistical power) zero.

Disconnection Notice-Effect: Electricity

Disconnection Notice-Effect: Gas

But, no impact on disconnection of services.

Main question:

- Can energy education alone leads to energy savings and make energy bills more affordable?
- Perhaps no

Main question:

- Can energy education alone leads to energy savings and make energy bills more affordable?
- Perhaps no
- Can energy education complemented with other strategies leads to energy savings and make energy bills more affordable?
- Surely yes!

Main question:

- Can energy education alone leads to energy savings and make energy bills more affordable?
- Perhaps no
- Can energy education complemented with other strategies leads to energy savings and make energy bills more affordable?
- Surely yes!

Secondary questions:

- Does the teaching format matter: in-person versus online? Yes
- How to encourage households to attend an energy class? ????
- How does energy behavior change as a response to a class?
 Hypothesis that households consume at a subsistence level doesn't seem to hold.