Optimal fiscal policy when tastes are inherited and environmental quality matters

Stéphane Bouché¹ Carlos de Miguel²

¹Universidade de Vigo and ECOBAS

²Universidade de Vigo and REDE

8th Atlantic Workshop on Energy and Environmental Economics

June 2018

Introduction	The model	Optimal fiscal policy	Quantitative illustration	Conclusion
Introductio	on			

- Short-lived individuals fail to internalize long term impact of present decisions on future environmental degradation.
- Intergenerational aspect of the problem justifies the use of the OLG model (see, John and Pecchenino, 1994; Ono, 1996; Bovenberg and Heijdra, 1998).
- Introduction of additional intergenerational externality under the form of aspirations in consumption and environmental quality.
- Aspirations are inherited from previous generation and used as a reference to evaluate utility (De la Croix, 1996; De la Croix and Michel, 1999; Alonso-Carrera et al. 2007).

Introduction	The model	Optimal fiscal policy	Quantitative illustration	Conclusion
Introductio	on			

- Aspirations have been disconnected from environmental concerns (exceptions: Schumacher and Zou, 2008; Aronsson and Johansson-Stenman, 2014).
- Presence of aspirations highlights the importance of relative well-being. Utility does not only depend on levels but also on some reference point (Clark and Oswald, 1996; Ferrer-i-Carbonell, 2005).
- Large evidence in favor of intergenerational transfer of tastes between parents and children (Becker, 1992; Waldkirch et al., 2004; Senik, 2009).

Introduction	The model	Optimal fiscal policy	Quantitative illustration	Conclusion
Introductio	on			

- Our paper can be related to works linking habits and status effects to environmental degradation (Wendner, 2003, 2005; Brekke and Howarth, 2003; Howarth, 2006).
- OLG model with identical agents (focus on efficiency). Agents live for two periods and work only in the first. Population is constant.
- Production takes place with constant returns to scale technology using capital and labor.
- Arbitrary taxes are used to finance given stream of public expenditures.

	The model	Optimal fiscal policy	Quantitative illustration	Conclusion
The model				

- Few studies have focused on second-best policies with relative well-being and environment.
- Lifetime utility: $U(c_t, a_t, d_{t+1}, n_t, E_t, E_{t+1})$.
- Utility exhibits consumption aspirations in young age $a_t = c_{t-1}$ and environmental aspirations in old age E_t .
- Utility separable across periods of life and between consumption, labor and environmental quality.

•
$$U_{c_t}, U_{d_{t+1}}, U_{E_{t+1}} > 0, U_{a_t}, U_{n_t}, U_{E_t} < 0 \text{ and } U_{c_t a_t}, U_{E_{t+1} E_t} > 0.$$

• When young, labor income split between consumption, maintenance investment and savings:

$$(1 + \tau_t^c)c_t + (1 + \tau_t^m)m_t + s_t = (1 - \tau_t^w)w_tn_t.$$

• When old, capital income used for consumption:

$$(1 + \tau_{t+1}^{c})d_{t+1} = [1 + r_{t+1}(1 - \tau_{t+1}^{r})]s_t,$$

where τ^i are the different tax rates.

 Output produced by representative firm with a constant returns to scale production function using capital and labor: F(k_t, n_t).

• Equality between prices and marginal productivities:

$$w_t = F_{n_t}(k_t, n_t),$$

$$r_t + \delta = F_{k_t}(k_t, n_t).$$

where δ is the depreciation rate of the capital stock.

• Market clearing implies that savings equal the future capital stock:

$$k_{t+1}=s_t.$$

	The model	Optimal fiscal policy	Quantitative illustration	Conclusion
The model				

• Evolution of environmental quality:

$$E_{t+1} = E_t + b(\overline{E} - E_t) - \kappa_c(c_t + d_t) + \kappa_m m_t.$$

where *b* natural regeneration rate, \overline{E} natural level of environmental quality, κ_c impact of pollution, κ_m impact of maintenance investment.

- When solving the optimization problem, the agent takes into account the impact of young age consumption and maintenance investment on environmental quality.
- Impact of old age consumption on environmental quality not taken into account. Intergenerational externality.

• The government collects taxes in order to finance a given level of public expenditures *G_t*:

$$G_t = \tau_t^c(c_t + d_t) + \tau_t^m m_t + \tau_t^w w_t n_t + \tau_t^r r_t k_t.$$

- By solving optimization problem of a representative generation we obtain following equilibrium conditions:
- Intertemporal allocation of consumption:

$$\frac{U_{c_t}}{U_{d_{t+1}}} = \frac{[1 + r_{t+1}(1 - \tau_{t+1}^r)][\kappa_m(1 + \tau_t^c) + \kappa_c(1 + \tau_t^m)]}{\kappa_m(1 + \tau_{t+1}^c)}$$

Intratemporal allocation between young age consumption and leisure:

$$-\frac{U_{c_t}}{U_{n_t}}=\frac{\kappa_m(1+\tau_t^c)+\kappa_c(1+\tau_t^m)}{\kappa_m(1-\tau_t^w)w_t}.$$

 Intratemporal allocation between young age consumption and maintenance investment:

$$\frac{U_{c_t}}{U_{m_t}} = \frac{\kappa_m (1 + \tau_t^c) + \kappa_c (1 + \tau_t^m)}{\kappa_m (1 + \tau_t^m)}.$$

 In competitive equilibrium, policies are arbitrary. We will now study optimal fiscal policies taking the behavior of agents as given.

	The model	Optimal fiscal policy	Quantitative illustration	Conclusion
Optimal fis	scal policy			

- The government has access to a commitment technology preventing revision of the optimal plan.
- Problem solved following the primal approach (Lucas and Stockey, 1983; Chari and Kehoe, 1999).
- Planner chooses directly the optimal allocation (instead of tax rates) from a restricted set of allocations.
- Implementable allocation should satisfy the intertemporal budget constraint as well as the first-order conditions of the competitive equilibrium.

• Computation of the implementability constraint (unique for each generation):

$$\lambda_t \left[(1 + \tau_t^c) c_t + (1 + \tau_t^m) m_t - (1 - \tau_t^w) w_t n_t + \frac{(1 + \tau_{t+1}^c) d_{t+1}}{1 + r_{t+1}(1 - \tau_{t+1}^r)} \right] = 0.$$

• Use FOC to substitute for taxes and prices and obtain the implementability constraint for generation *t*:

$$U_{c_t}c_t + U_{E_{t+1}}(\kappa_m m_t - \kappa_c c_t) + U_{d_{t+1}}d_{t+1} + U_{n_t}n_t = 0.$$

	The model	Optimal fiscal policy	Quantitative illustration	Conclusion
Optimal fi	scal policy	1		

- Objective of the planner is to maximize the discounted sum of utilities subject to the implementability constraints, the feasibility constraint and the evolution of environmental quality.
- For initial old generation, τ_0^r is fixed in order to avoid lump-sum taxation. d_0 fixed as well.
- Objective function for generation t given by:

$$W^{t} = U^{t} + \mu_{t} \left[U_{c_{t}}c_{t} + U_{E_{t+1}}(\kappa_{m}m_{t} - \kappa_{c}c_{t}) + U_{d_{t+1}}d_{t+1} + U_{n_{t}}n_{t} \right].$$

• Planner solves the following problem:

$$\max\sum_{t=0}^{\infty}\zeta^{t}W^{t},$$

subject to:

$$c_t + d_t + m_t + k_{t+1} + G_t - F(k_t, n_t) - (1 - \delta)k_t = 0, E_{t+1} - E_t - b(\overline{E} - E_t) + \kappa_c(c_t + d_t) - \kappa_m m_t = 0,$$

given initial conditions $\{k_0, d_0, E_0, c_{-1}\}$.

• ζ is the social discount factor. $-\zeta^t \mu_t^1$ and $\zeta^t \mu_t^2$ are the multipliers of both constraints.

• At the optimum, capital taxes must satisfy the following condition:

$$\tau_{t+1}^{r} = \frac{1}{F_{k_{t+1}} - \delta} \left[1 + F_{k_{t+1}} - \delta - \frac{U_{c_{t}}^{*}}{U_{d_{t+1}}^{*}h(.)} \right],$$

where
$$h(.) = [\kappa_m(1 + \tau_t^c) + \kappa_c(1 + \tau_t^m)] / \kappa_m(1 + \tau_{t+1}^c).$$

•
$$\tau_{t+1}^r = 0$$
 if $h(.) = \overline{h} > 1$. $\tau_{t+1}^r < (>)0$ if $h(.) < (>)\overline{h}$.

• Maintenance subsidies and increasing consumption taxes $(\tau_t^c < \tau_{t+1}^c)$ associated to larger capital subsidies.

• At the optimum, capital taxes must also satisfy:

$$\tau_{t+1}^{r} = \frac{1}{F_{k_{t+1}} - \delta} \left[1 + F_{k_{t+1}} - \delta - \frac{U_{n_{t}}^{*}}{U_{d_{t+1}}^{*} F_{n_{t}}} p(.) \right],$$

where
$$p(.) = 1 + \tau_{t+1}^{c}/1 - \tau_{t}^{w}$$
.

•
$$\tau_{t+1}^r = 0$$
 if $p(.) = \overline{p} > 1$. $\tau_{t+1}^r < (>)0$ if $p(.) > (<)\overline{p}$.

• Capital subsidies only possible if income and consumption taxes are sufficiently large.

• Decentralization of optimal allocation also requires

$$\frac{1 + \tau_t^c}{1 + \tau_t^m} > 1 - \frac{\kappa_c}{\kappa_m}$$

- Policy implies an increase in savings since aspirations induce overconsumption in young age.
- In standard OLG model, intervention on capital justified when agents work in all periods. Here result driven by aspirations.
- Results related to the inability of the planner to impose age-dependent taxes.

	The model	Optimal fiscal policy	Quantitative illustration	Conclusion
Quantitativ	ve illustratio	on		

• Logarithmic utility function:

$$U = \theta \ln(c_t - \rho_c a_t) + \epsilon \ln(1 - n_t) + \beta \theta \ln(d_{t+1}) + \beta \eta \ln(E_{t+1} - \rho_e E_t).$$

• Cobb-Douglas production function:

$$F(k_t, n_t) = Ak_t^{\alpha} n_t^{1-\alpha}.$$

- Values for the parameters: $\theta = 1$, $\epsilon = 2$, $\beta = 0.3$, $\eta = 0.9$, $\rho_c = \rho_e = 0.65$, $\alpha = 0.33$, $\delta = 1$, $\zeta = 0.99$, $\kappa_c = 0.1$, $\kappa_m = 0.2$, b = 0.2.
- Fixed public spending/output ratio = g = 0.23.

	The model	Optimal fiscal policy	Quantitative illustration	Conclusion
Quantitati	ve illustrati	on		

- In competitive equilibrium fixed tax rates: $\tau^c = 0.17$, $\tau^r = 0.33$, $\tau^w = 0.41$, $\tau^m = 0$.
- In optimal case, computation of optimal tax rates. Need to fix one of the tax rates and we choose consumption taxes.
- Initial conditions for state-variables k₀, E₀, a₀ are set at 10% of the steady-state values.
- Competitive equilibrium displays overshooting behavior. Two roles for optimal policy: internalize externalities and stabilization device.

Quantitative illustration

Quantitative illustration

* 臣

Image: A matrix

Quantitative illustration

< □ > < 同 >

'문 ► ★ 문

Quantitative illustration

Fiscal policy, tastes, environment

E ► E ∽ ९ € Atlantic Workshop

- Aspirations in consumption imply that capital must be subsidized in some way.
- Larger maintenance subsidies and increasing consumption taxes are associated to smaller capital taxes.
- Public spending must be financed mostly by income and consumption taxes.
- Here focus on representative generation. Next focus on intragenerational heterogeneity.