Model 0000000 Simulations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Competitive Pressure & Emission-reducing Innovation

Claudio Baccianti and Oliver Schenker

Tilburg University & Frankfurt School of Finance & Management

A Toxa, June 21, 2018

Introduction • 0	Model	Simulations 0000	Conclusions
Motivation			

- Reducing emission-intensity is key for any solution to climate change
- Huge literature, mainly assuming static, atomistic market structure
- Compliance costs of regulated firms generate incentives to reduce costs
- But climate policy often operates in markets with imperfect competition (Fowlie, Reguant & Ryan, 2016)
- How does the market structure and its interaction with regulation affect innovation incentives?

Introduction	Model	Simulations	Conclusions
0•	000000	0000	

This paper

- Linking innovation and competition leads to novel insights on the efficiency of unilateral environmental policy instruments
- Shows the effect of policy on innovation under an endogenous market structure with heterogenous industries:
- Within industries firms with different costs compete à la Cournot (plus entry and exit) and choose innovation effort
- Changes in market structure induced by changes in comparative advantages render incentives for process innovation
- Unilateral policy increases productivity of average domestic firm, reduces domestic markups, causes domestic exit and foreign entry

Introduction	Model	Simulations	Conclusions
00	●○○○○○○	0000	
Consumers			

There are two (first symmetric) countries $r \in \{d, f\}$. Later, *d* will increase pollution price.

Households have CES preferences:
$$U_r = \left(\int_{j \in \omega} x_{jr}^{\alpha} dj\right)^{\frac{1}{\alpha}}$$

with elasticity of substitution between varieties of $\sigma = 1/(1-\alpha)$ with $\alpha \in (0,1)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Production and innovation

- In each region r, any variety j is produced by at least one firm, and products from different regions are perfectly substitutable
- Varieties can be identified by their underlying productivity and are drawn from a Pareto distribution
 Production:

$$\hat{q}_{jr} = e_{jr}^{\gamma} (z_{jr}^{\eta} l_{jr})^{1-\gamma}$$

$$c_{jr} = t_r^{\gamma} \left(\frac{w_r}{z_{jr}} \right)^{1-\gamma}$$

with endogenous productivity: $z_{jr} = \tilde{z}_j h_{jr}$

Introduction	Model	Simulations	Conclusions
00	000000	0000	

Market and competition

- In each variety $\sum_{r} n_r$ firms compete: $x_r = \sum_{s} n_s q_{sr}$. Firms are "large in the small, but small in the large".
- There are iceberg transport costs $\tau_{rs} \ge 1$. Thus, $\hat{q}_r = q_{rr} + \tau_{rs}q_{rs}$
- Firm's problem:

$$\underset{q_{rd},q_{rf},h_r}{\mathsf{Max}} \prod_{r} = \sum_{s} (p_s - \tau_{rs} c_r(z, w_r, t_r)) q_{rs} - w_r(h_r + \lambda_r)$$

s.t.

inverse Marshallian demand:

$$p_s = \frac{E_s}{X_s^{\alpha}} x_s^{\alpha-1}$$

(日) (日) (日) (日) (日) (日) (日)

with
$$E_s = \int_0^{M_s} p_s(z) x_s(z) dz$$

Introduction

Simulations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Product market equilibrium under Cournot

Cournot equilibrium quantities:

$$q_{rs} = \frac{x_s}{1 - \alpha} \left[1 - \vartheta_{rs} \left(\frac{\sum_{rr} n_{rr} + \alpha - 1}{n_r} \right) \right]$$
(1)

where
$$\vartheta_{rs} = \frac{\tau_{rs}n_rc_r}{\sum_{rr}c_{rr}\tau_{rr,s}n_{rr}}$$

Pricing:

$$p_{s} = \frac{\tau_{rs}c_{r}}{\theta_{rs}} = \frac{\sum_{rr} n_{rr}\tau_{rr,s}c_{rr}}{\sum_{rr} n_{rr} + \alpha - 1}$$
(2)
with $\theta_{rs} = \vartheta_{rs} \left(\frac{\sum_{rr} n_{rr} + \alpha - 1}{n_{r}}\right)$
Market share: $\rho_{rs} = \frac{1 - \theta_{rs}}{1 - \alpha}$

Introduction

Model ○○○○●○○ Simulations

Conclusions

Profit-maximizing innovation effort

FOC:
$$-\frac{\partial c_r}{\partial h_r}\hat{q}_r = w_r$$

Then:

$$h_r = \eta (1 - \gamma) \frac{c(\tilde{z})_r}{w_r} \hat{q}(\tilde{z})_r$$
(3)

Simulations

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Entry & exit of firms and varieties

- n_r identical firms produce $M \in [0, 1]$ varieties in country r.
- Both *M_r* and *n_r* are endogenous variables characterize two margins of entry.

Free entry condition:

$$\left(\sum_{s} \left(\frac{\tau_{rs}}{\theta(\tilde{z})_{rs}} - 1\right) c(\tilde{z})_{r}q(\tilde{z})_{rs}\right) - w_r \left(h_r(\tilde{z}) + \lambda\right) = 0 \tag{4}$$
$$n(\tilde{z})_r \ge 1 \tag{5}$$

Model

Simulations

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Aggregation and equilibrium

Demand:
$$x_r = (p_r/P_r)^{-\sigma} (E_r/P_r)$$
 (6)
Labor Market Clearing: $LL_r = \int_M n_r (ld_r \hat{q}_r + h_r + \lambda) dj$ (7)

Solve system of equation for $\{q_{rs}, p_{rs}, h_r, n_r, M, x_r, w_r\}$

Introduction

Model

Simulations

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Calibration

σ	Elasticity of substitution	3.8	Bernard et al. (2003)
γ	Emission value share	0.01	Shapiro & Walker (2018)
η	Elasticity of innovation f.	0.17	Impullitti et al. (2017)
ω	Lower bound Pareto distr.	0.2	Bernard et al. (2007)
κ	Shape of Pareto distr.	3.4	Bernard et al. (2007)
τ_{rs}	Iceberg transport cost	1.2	Impullitti et al. (2017)
λ	Fix cost of establishment	0.33	Impullitti et al. (2017)

Table: Parameter

Introd	uction
00	

Model

Simulations

Conclusions

Symmetric benchmark

Introduction	Model	Simulations	Conclusions
00	0000000	0000	

Average effects

Increase of t_d by 50%.

	d	f
Δ Average emission intensity	-10.19%	11.86%
Δ Average productivity	0.29%	-0.28%
Δ Average R&D expenses	1.76%	-1.65%
Δ Average number of firms	-1.61%	1.56%
Δ Average output per firm	0.14%	0.03%
Δ Average markup	-0.18%	0.17%

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Introduction 00	Model	Simulations	Conclusions

Simple decomposition

Figure: Decomposition change in emission intensity.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Develops a general equilibrium model with heterogeneous industries in which firms compete à la Cournot, endogenous market structure and process innovation
- Reveals interaction between induced comparative advantages, market structures and innovation.
- Unilateral policy increases productivity of average domestic firm, reduces domestic markups, causes domestic exit and foreign entry
- To do: Improve calibration
- So far ignored innovation spillover (across firms, industries, countries)

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Thank you for your attention!

Funding from European Commission's 7th FP (Project ENTRACTE) and the Robert Bosch Foundation is gratefully acknowledged.

o.schenker @ fs.de